咨询与建议

限定检索结果

文献类型

  • 9 篇 会议
  • 7 篇 期刊文献

馆藏范围

  • 16 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 11 篇 工学
    • 7 篇 计算机科学与技术...
    • 5 篇 软件工程
    • 4 篇 信息与通信工程
    • 4 篇 生物工程
    • 3 篇 电气工程
    • 1 篇 机械工程
    • 1 篇 控制科学与工程
    • 1 篇 化学工程与技术
    • 1 篇 生物医学工程(可授...
  • 4 篇 理学
    • 4 篇 生物学
    • 1 篇 化学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 2 篇 graph neural net...
  • 2 篇 transformer
  • 2 篇 deep learning
  • 2 篇 bert
  • 2 篇 text generation
  • 2 篇 semantics
  • 2 篇 attention mechan...
  • 2 篇 essay generation
  • 1 篇 convolutionalneu...
  • 1 篇 musculoskeletal ...
  • 1 篇 few-shot charge ...
  • 1 篇 pre-trained lang...
  • 1 篇 adversarial lear...
  • 1 篇 knowledge graph ...
  • 1 篇 recurrentneuraln...
  • 1 篇 signal encoding
  • 1 篇 deepsemanticmatc...
  • 1 篇 semi-supervised ...
  • 1 篇 knowledge graph
  • 1 篇 contextual summa...

机构

  • 7 篇 research institu...
  • 4 篇 lab of social in...
  • 4 篇 shaanxi joint ke...
  • 3 篇 xi'an key labora...
  • 2 篇 lab of social in...
  • 2 篇 shaanxi joint ke...
  • 2 篇 shaanxi joint ke...
  • 2 篇 lab of social in...
  • 1 篇 alltuu inc.
  • 1 篇 xi’an jiao-tong ...
  • 1 篇 xi’an jiaotong u...
  • 1 篇 shanxi joint key...
  • 1 篇 state key labora...
  • 1 篇 school of softwa...
  • 1 篇 school of softwa...
  • 1 篇 xi’an key labora...
  • 1 篇 shaanxi joint ke...
  • 1 篇 shaanxi joint ke...
  • 1 篇 college of compu...
  • 1 篇 lab of social in...

作者

  • 10 篇 rao yuan
  • 5 篇 yuan rao
  • 2 篇 wu lianwei
  • 2 篇 li li
  • 2 篇 wang shuo
  • 2 篇 xu yifei
  • 2 篇 sun ling
  • 2 篇 cong feng
  • 2 篇 qi jiangnan
  • 2 篇 wang wanzhen
  • 2 篇 nazir ambreen
  • 2 篇 feng cong
  • 2 篇 fan xiaobing
  • 1 篇 guo zicheng
  • 1 篇 he wangbo
  • 1 篇 qinyu bian
  • 1 篇 li jiale
  • 1 篇 ambreen nazir
  • 1 篇 xue li
  • 1 篇 yang xiong

语言

  • 16 篇 英文
检索条件"机构=Xi’an Key Laboratory for Social Intelligence and Complex Data Processing"
16 条 记 录,以下是11-20 订阅
排序:
Joint Event Extraction Model based on Multi-feature Fusion  8
Joint Event Extraction Model based on Multi-feature Fusion
收藏 引用
8th International Conference on Identification, Information and Knowledge in the Internet of Things, IIKI 2019
作者: Wang, Shuo Rao, Yuan Fan, xiaobing Qi, Jiangnan Research Institute of Xi’an Jiaotong University Shenzhen China Lab of Social Intelligence and Complex Data Precessiong School of Software Engineering Xi’an Jiao Tong University Xi’an China Shaanxi Joint Key Laboratory for Artifact Intelligence Xi’an Jiaotong University Xi’an China
Event extraction is a challenging problem in information extraction, designed to extract structured information from unstructured text. The existing event extraction methods are mostly based on the pipeline model and ... 详细信息
来源: 评论
Evidence-aware hierarchical interactive attention networks for explainable claim verification  29
Evidence-aware hierarchical interactive attention networks f...
收藏 引用
29th International Joint Conference on Artificial intelligence, IJCAI 2020
作者: Wu, Lianwei Rao, Yuan Yang, xiong Wang, Wanzhen Nazir, Ambreen Lab of Social Intelligence and Complexity Data Processing School of Software Engineering Xi'an Jiaotong University China Shannxi Joint Key Laboratory for Artifact Intelligence Sub-Lab of Xi'an Jiaotong University China Research Institute of Xi'an Jiaotong University Shenzhen China
Exploring evidence from relevant articles to confirm the veracity of claims is a trend towards explainable claim verification. However, most strategies capture the top-k check-worthy articles or salient words as evide... 详细信息
来源: 评论
Pre-trained Language Embedding-based Contextual Summary and Multi-scale Transmission Network for Aspect Extraction
收藏 引用
Procedia Computer Science 2020年 174卷 40-49页
作者: Cong Feng Yuan Rao Ambreen Nazir Lianwei Wu Long He Research Institute of Xi’an Jiaotong University Shenzhen China Lab of Social Intelligence and Complex Data Processing School of Software Engineering Xi’an Jiao Tong University Xi’an China Shaanxi Joint Key Laboratory for Artifact Intelligence Xi’an Jiao Tong University Xi’an China
With the development of IOT and 5G technology, people’s demand for information acquisition is more inclined to accuracy, intelligence and timeliness. How to help designer obtain the real-time information of specific ... 详细信息
来源: 评论
Content-Based Hybrid Deep Neural Network Citation Recommendation Method
Content-Based Hybrid Deep Neural Network Citation Recommenda...
收藏 引用
2020国际计算机前沿大会
作者: Leipeng Wang Yuan Rao Qinyu Bian Shuo Wang Shenzhen Research Institute of Xi’an Jiaotong University Lab of Social Intelligence and Complex Data Processing Software SchoolXi’an Jiaotong University Shanxi Joint Key Laboratory for Artifact Intelligence (Sub-Lab of Xi’an Jiaotong University)
The rapid growth of scientific papers makes it difficult to query related papers efficiently, accurately and with high coverage. Traditional citation recommendation algorithms rely heavily on the metadata of query doc... 详细信息
来源: 评论
SLBCNN: A Improved Deep Learning Model for Few-Shot Charge Prediction
收藏 引用
Procedia Computer Science 2020年 174卷 32-39页
作者: Xue Li Yuan Rao Wanzhen Wang Cong Feng Research Institute of Xi’an Jiaotong University Shenzhen China Lab of Social Intelligence and Complex Data Precessiong School of Software Engineering Xi’an Jiao Tong University Xi’an China Shaanxi Joint Key Laboratory for Artifact Intelligence Xi’an Jiaotong University Xi’an China
Traditional prediction methods of legal judgment rarely work well on few-shot charge prediction task, which is intended to predict possible crimes, laws and terms according to a given few-shot case description. A majo... 详细信息
来源: 评论
Joint Event Extraction Model based on Multi-feature Fusion
收藏 引用
Procedia Computer Science 2020年 174卷 115-122页
作者: Wang Shuo Rao Yuan Fan xiaobing Qi Jiangnan Research Institute of Xi’an Jiaotong University Shenzhen China Lab of Social Intelligence and Complex Data Precessiong School of Software Engineering Xi’an Jiao Tong University Xi’an China Shaanxi Joint Key Laboratory for Artifact Intelligence Xi’an Jiaotong University Xi’an China
Event extraction is a challenging problem in information extraction, designed to extract structured information from unstructured text. The existing event extraction methods are mostly based on the pipeline model and ... 详细信息
来源: 评论