咨询与建议

限定检索结果

文献类型

  • 99 篇 会议
  • 87 篇 期刊文献

馆藏范围

  • 186 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 128 篇 工学
    • 86 篇 计算机科学与技术...
    • 82 篇 软件工程
    • 33 篇 信息与通信工程
    • 27 篇 生物工程
    • 21 篇 光学工程
    • 16 篇 机械工程
    • 8 篇 控制科学与工程
    • 8 篇 生物医学工程(可授...
    • 6 篇 化学工程与技术
    • 4 篇 仪器科学与技术
    • 3 篇 电气工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 建筑学
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
    • 2 篇 交通运输工程
    • 2 篇 安全科学与工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 冶金工程
    • 1 篇 动力工程及工程热...
  • 85 篇 理学
    • 43 篇 物理学
    • 29 篇 数学
    • 27 篇 生物学
    • 7 篇 统计学(可授理学、...
    • 6 篇 化学
  • 32 篇 管理学
    • 22 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 医学
    • 2 篇 临床医学
  • 2 篇 艺术学
    • 2 篇 设计学(可授艺术学...
  • 1 篇 农学

主题

  • 13 篇 convolution
  • 12 篇 feature extracti...
  • 10 篇 image edge detec...
  • 10 篇 image reconstruc...
  • 9 篇 semantics
  • 8 篇 image segmentati...
  • 8 篇 computer vision
  • 6 篇 three-dimensiona...
  • 6 篇 pixels
  • 6 篇 training
  • 5 篇 generative adver...
  • 5 篇 writing
  • 5 篇 face
  • 5 篇 image color anal...
  • 4 篇 distillation
  • 4 篇 face recognition
  • 4 篇 optical resolvin...
  • 4 篇 text recognition
  • 4 篇 biological syste...
  • 4 篇 mathematical mod...

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 31 篇 national key lab...
  • 28 篇 computer vision ...
  • 26 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 12 篇 xiamen key labor...
  • 11 篇 shanghai artific...
  • 8 篇 shanghai ai lab
  • 8 篇 department of co...
  • 8 篇 the chinese univ...
  • 7 篇 department of st...
  • 7 篇 the university o...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 university of ma...

作者

  • 59 篇 qiao yu
  • 27 篇 dong chao
  • 26 篇 yu qiao
  • 17 篇 wang yali
  • 17 篇 pal umapada
  • 17 篇 lu tong
  • 16 篇 umapada pal
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 15 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 8 篇 chen shifeng
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...
  • 7 篇 zhou zhipeng
  • 7 篇 liu yihao

语言

  • 184 篇 英文
  • 2 篇 其他
检索条件"机构=Xiamen Key Lab of Computer Vision and Pattern Recognition"
186 条 记 录,以下是91-100 订阅
排序:
Fast Texture Synthesis via Pseudo Optimizer
Fast Texture Synthesis via Pseudo Optimizer
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Wu Shi Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Texture synthesis using deep neural networks can generate high quality and diversified textures. However, it usually requires a heavy optimization process. The following works accelerate the process by using feed-forw... 详细信息
来源: 评论
Smallbignet: Integrating core and contextual views for video classification
arXiv
收藏 引用
arXiv 2020年
作者: Li, Xianhang Wang, Yali Zhou, Zhipeng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Temporal convolution has been widely used for video classification. However, it is performed on spatio-temporal contexts in a limited view, which often weakens its capacity of learning video representation. To allevia... 详细信息
来源: 评论
Learning to predict context-adaptive convolution for semantic segmentation
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Jianbo He, Junjun Ren, Jimmy S. Qiao, Yu Li, Hongsheng CUHK-SenseTime Joint Laboratory Chinese University of Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SenseTime Research
Long-range contextual information is essential for achieving high-performance semantic segmentation. Previous feature re-weighting methods [34] demonstrate that using global context for re-weighting feature channels c... 详细信息
来源: 评论
Learning Attentive Pairwise Interaction for Fine-Grained Classification
arXiv
收藏 引用
arXiv 2020年
作者: Zhuang, Peiqin Wang, Yali Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Fine-grained classification is a challenging problem, due to subtle differences among highly-confused categories. Most approaches address this difficulty by learning discriminative representation of individual input i... 详细信息
来源: 评论
Learning dynamical human-joint affinity for 3D pose estimation in videos
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Junhao Wang, Yali Zhou, Zhipeng Luan, Tianyu Wang, Zhe Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of California Irvine United States Shanghai AI Laboratory Shanghai China
Graph Convolution Network (GCN) has been successfully used for 3D human pose estimation in videos. However, it is often built on the fixed human-joint affinity, according to human skeleton. This may reduce adaptation ... 详细信息
来源: 评论
DegAE: A New Pretraining Paradigm for Low-Level vision
DegAE: A New Pretraining Paradigm for Low-Level Vision
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Yihao Liu Jingwen He Jinjin Gu Xiangtao Kong Yu Qiao Chao Dong Shanghai Artificial Intelligence Laboratory ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences The University of Sydney
Self-supervised pretraining has achieved remarkable success in high-level vision, but its application in low-level vision remains ambiguous and not well-established. What is the primitive intention of pretraining? Wha...
来源: 评论
Enhanced quadratic video interpolation
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Yihao Xie, Liangbin Siyao, Li Sun, Wenxiu Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China SenseTime Research
With the prosperity of digital video industry, video frame interpolation has arisen continuous attention in computer vision community and become a new upsurge in industry. Many learning-based methods have been propose... 详细信息
来源: 评论
Compressed sensing ensemble classifier for human detection
Compressed sensing ensemble classifier for human detection
收藏 引用
4th International Conference on Intelligence Science and Big Data Engineering, IScIDE 2013
作者: Zhang, Baochang Liu, Juan Gao, Yongsheng Liu, Jianzhuang Science and Technology on Aircraft Control Laboratory School of Automation Science and Electrical Engineering BeiHang University Beijing 100191 China School of Engineering Griffith University Australia Shenzhen Key Lab for Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Department of Information Engineering Chinese University of Hong Kong Hong Kong Hong Kong
This paper proposes a novel Compressed Sensing Ensemble Classifier (CSEC) for human detection. The proposed CSEC employs the compressed sensing technique to get a more sparse model with a more reasonable selection of ... 详细信息
来源: 评论
Digging into Uncertainty in Self-supervised Multi-view Stereo
Digging into Uncertainty in Self-supervised Multi-view Stere...
收藏 引用
International Conference on computer vision (ICCV)
作者: Hongbin Xu Zhipeng Zhou Yali Wang Wenxiong Kang Baigui Sun Hao Li Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences South China University of Technology Alibaba Group Pazhou Laboratory Shanghai AI Laboratory
Self-supervised Multi-view stereo (MVS) with a pretext task of image reconstruction has achieved significant progress recently. However, previous methods are built upon intuitions, lacking comprehensive explanations a... 详细信息
来源: 评论
Multiple Transfer Learning and Multi-label Balanced Training Strategies for Facial AU Detection In the Wild
Multiple Transfer Learning and Multi-label Balanced Training...
收藏 引用
IEEE computer Society Conference on computer vision and pattern recognition Workshops (CVPRW)
作者: Sijie Ji Kai Wang Xiaojiang Peng Jianfei Yang Zhaoyang Zeng Yu Qiao Nanyang Technological University Singapore ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Science Sun Yat-Sen University China
This paper 1 presents SIAT-NTU solution and results of facial action unit (AU) detection in the EmotiNet Challenge 2020. The task aims to detect 23 AUs from facial images in the wild, and its main difficulties lie in... 详细信息
来源: 评论