咨询与建议

限定检索结果

文献类型

  • 99 篇 会议
  • 89 篇 期刊文献

馆藏范围

  • 188 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 129 篇 工学
    • 87 篇 计算机科学与技术...
    • 82 篇 软件工程
    • 33 篇 信息与通信工程
    • 27 篇 生物工程
    • 21 篇 光学工程
    • 16 篇 机械工程
    • 8 篇 控制科学与工程
    • 8 篇 生物医学工程(可授...
    • 6 篇 化学工程与技术
    • 4 篇 仪器科学与技术
    • 3 篇 电气工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 建筑学
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
    • 2 篇 交通运输工程
    • 2 篇 安全科学与工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 冶金工程
    • 1 篇 动力工程及工程热...
  • 85 篇 理学
    • 43 篇 物理学
    • 29 篇 数学
    • 27 篇 生物学
    • 7 篇 统计学(可授理学、...
    • 6 篇 化学
  • 32 篇 管理学
    • 22 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 医学
    • 2 篇 临床医学
  • 2 篇 艺术学
    • 2 篇 设计学(可授艺术学...
  • 1 篇 农学

主题

  • 13 篇 convolution
  • 12 篇 feature extracti...
  • 10 篇 image edge detec...
  • 10 篇 image reconstruc...
  • 9 篇 semantics
  • 8 篇 image segmentati...
  • 8 篇 computer vision
  • 6 篇 three-dimensiona...
  • 6 篇 pixels
  • 6 篇 training
  • 5 篇 generative adver...
  • 5 篇 writing
  • 5 篇 face
  • 5 篇 image color anal...
  • 4 篇 distillation
  • 4 篇 face recognition
  • 4 篇 optical resolvin...
  • 4 篇 text recognition
  • 4 篇 biological syste...
  • 4 篇 mathematical mod...

机构

  • 40 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 31 篇 national key lab...
  • 28 篇 computer vision ...
  • 26 篇 shenzhen key lab...
  • 22 篇 faculty of compu...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 14 篇 xiamen key labor...
  • 11 篇 shanghai artific...
  • 10 篇 department of co...
  • 8 篇 shanghai ai lab
  • 8 篇 the chinese univ...
  • 7 篇 department of st...
  • 7 篇 the university o...
  • 6 篇 shanghai jiao to...
  • 6 篇 shenzhen key lab...
  • 6 篇 fujian key labor...

作者

  • 59 篇 qiao yu
  • 27 篇 dong chao
  • 26 篇 yu qiao
  • 17 篇 wang yali
  • 17 篇 pal umapada
  • 17 篇 lu tong
  • 16 篇 umapada pal
  • 16 篇 tong lu
  • 16 篇 palaiahnakote sh...
  • 15 篇 shivakumara pala...
  • 11 篇 chao dong
  • 10 篇 he junjun
  • 9 篇 chen xiangyu
  • 9 篇 gu jinjin
  • 9 篇 peng xiaojiang
  • 8 篇 chen shifeng
  • 8 篇 ren jimmy s.
  • 7 篇 blumenstein mich...
  • 7 篇 zhou zhipeng
  • 7 篇 liu yihao

语言

  • 186 篇 英文
  • 2 篇 其他
检索条件"机构=Xiamen Key Lab of Computer Vision and Pattern Recognition"
188 条 记 录,以下是71-80 订阅
排序:
A semantic model for video based face recognition
A semantic model for video based face recognition
收藏 引用
International Conference on Information and Automation (ICIA)
作者: Dihong Gong Kai Zhu Zhifeng Li Yu Qiao Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences The Chinese University of Hong Kong Hong Kong
Video-based face recognition has attracted a great deal of attention in recent years due to its wide applications. The challenge of video-based face recognition comes from several aspects. First, video data involves m... 详细信息
来源: 评论
ES6D: A Computation Efficient and Symmetry-Aware 6D Pose Regression Framework
arXiv
收藏 引用
arXiv 2022年
作者: Mo, Ningkai Gan, Wanshui Yokoya, Naoto Chen, Shifeng ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China The University of Tokyo Japan RIKEN Japan
In this paper, a computation efficient regression framework is presented for estimating the 6D pose of rigid objects from a single RGB-D image, which is applicable to handling symmetric objects. This framework is desi... 详细信息
来源: 评论
Pose focus transformer meet inter-part relation
收藏 引用
Expert Systems with Applications 2024年 240卷
作者: Luo, Yanmin Lin, Hongwei Huang, Wenlin Wang, Youjie Du, Jixiang Guo, Jing-Ming College of Computer Science and Technology Huaqiao University Xiamen361021 China Xiamen Key Laboratory of Computer Vision and Pattern Recognition Huaqiao University Xiamen361021 China Maynooth International Engineering College Fuzhou University Fuzhou350108 China Department of Electrical Engineering National Taiwan University of Science and Technology Taipei10607 China
Human pose estimation in crowded scenes is a challenging task. Due to overlap and occlusion, it is difficult to infer pose clues from individual keypoints. We proposed PFFormer, a new transformer-based approach that t... 详细信息
来源: 评论
PIPAL: A Large-Scale Image Quality Assessment Dataset for Perceptual Image Restoration  16th
PIPAL: A Large-Scale Image Quality Assessment Dataset for Pe...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Jinjin, Gu Haoming, Cai Haoyu, Chen Xiaoxing, Ye Ren, Jimmy S. Chao, Dong The School of Data Science The Chinese University of Hong Kong Shenzhen China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China SenseTime Research Science Park Hong Kong SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent IR methods based on Generative Adversarial Networks (GANs) have achieved significant impr... 详细信息
来源: 评论
RankSRGAN: Super resolution generative adversarial networks with learning to rank
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Wenlong Liu, Yihao Dong, Chao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Shanghai AI Lab Shanghai China
Generative Adversarial Networks (GAN) have demonstrated the potential to recover realistic details for single image super-resolution (SISR). To further improve the visual quality of super-resolved results, PIRM2018-SR... 详细信息
来源: 评论
RankSRGAN: Generative Adversarial Networks With Ranker for Image Super-Resolution
RankSRGAN: Generative Adversarial Networks With Ranker for I...
收藏 引用
International Conference on computer vision (ICCV)
作者: Wenlong Zhang Yihao Liu Chao Dong Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences
Generative Adversarial Networks (GAN) have demonstrated the potential to recover realistic details for single image super-resolution (SISR). To further improve the visual quality of super-resolved results, PIRM2018-SR... 详细信息
来源: 评论
Modulating image restoration with continual levels via adaptive feature modification layers
arXiv
收藏 引用
arXiv 2019年
作者: He, Jingwen Dong, Chao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Chinese University of Hong Kong
In image restoration tasks, like denoising and superresolution, continual modulation of restoration levels is of great importance for real-world applications, but has failed most of existing deep learning based image ... 详细信息
来源: 评论
Bootstrap Diffusion Model Curve Estimation for High Resolution Low-Light Image Enhancement
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Jiancheng Liu, Yifan Chen, Shifeng ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China University of Chinese Academy of Sciences Beijing China
Learning-based methods have attracted a lot of research attention and led to significant improvements in low-light image enhancement. However, most of them still suffer from two main problems: expensive computational ... 详细信息
来源: 评论
KV Inversion: KV Embeddings Learning for Text-Conditioned Real Image Action Editing
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Jiancheng Liu, Yifan Qin, Jin Chen, Shifeng ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China University of Chinese Academy of Sciences Beijing China
Text-conditioned image editing is a recently emerged and highly practical task, and its potential is immeasurable. However, most of the concurrent methods are unable to perform action editing, i.e. they can not produc... 详细信息
来源: 评论
FD-GAN: Generative adversarial networks with fusion-discriminator for single image dehazing
arXiv
收藏 引用
arXiv 2020年
作者: Dong, Yu Liu, Yihao Zhang, He Chen, Shifeng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences China Adobe Inc.
Recently, convolutional neural networks (CNNs) have achieved great improvements in single image dehazing and attained much attention in research. Most existing learning-based dehazing methods are not fully end-to-end,... 详细信息
来源: 评论