咨询与建议

限定检索结果

文献类型

  • 73 篇 会议
  • 64 篇 期刊文献

馆藏范围

  • 137 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 105 篇 工学
    • 74 篇 计算机科学与技术...
    • 68 篇 软件工程
    • 33 篇 信息与通信工程
    • 23 篇 生物工程
    • 22 篇 光学工程
    • 11 篇 生物医学工程(可授...
    • 9 篇 机械工程
    • 8 篇 化学工程与技术
    • 7 篇 控制科学与工程
    • 4 篇 电气工程
    • 4 篇 建筑学
    • 4 篇 交通运输工程
    • 3 篇 仪器科学与技术
    • 3 篇 电子科学与技术(可...
    • 3 篇 土木工程
    • 3 篇 安全科学与工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 测绘科学与技术
  • 63 篇 理学
    • 32 篇 物理学
    • 23 篇 生物学
    • 19 篇 数学
    • 8 篇 化学
    • 7 篇 统计学(可授理学、...
    • 1 篇 大气科学
  • 33 篇 管理学
    • 23 篇 图书情报与档案管...
    • 13 篇 管理科学与工程(可...
  • 6 篇 医学
    • 6 篇 临床医学
    • 5 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 农学

主题

  • 12 篇 convolution
  • 5 篇 deep learning
  • 5 篇 semantics
  • 4 篇 distillation
  • 4 篇 pixels
  • 3 篇 face recognition
  • 3 篇 computer vision
  • 3 篇 image reconstruc...
  • 3 篇 training
  • 2 篇 image enhancemen...
  • 2 篇 semantic segment...
  • 2 篇 hidden markov mo...
  • 2 篇 generative adver...
  • 2 篇 non-local
  • 2 篇 long short-term ...
  • 2 篇 image segmentati...
  • 2 篇 signal encoding
  • 2 篇 handwritten math...
  • 2 篇 vectors
  • 2 篇 data mining

机构

  • 23 篇 fujian key labor...
  • 19 篇 shanghai ai labo...
  • 18 篇 school of comput...
  • 17 篇 shenzhen key lab...
  • 14 篇 university of ch...
  • 14 篇 xiamen key labor...
  • 11 篇 college of compu...
  • 11 篇 sensetime resear...
  • 11 篇 shanghai artific...
  • 10 篇 department of co...
  • 9 篇 shenzhen key lab...
  • 8 篇 fujian key labor...
  • 7 篇 department of in...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 fujian key labor...
  • 6 篇 shenzhen key lab...
  • 6 篇 university of ma...
  • 5 篇 shenzhen key lab...
  • 5 篇 college of compu...

作者

  • 22 篇 qiao yu
  • 20 篇 wang da-han
  • 13 篇 wang yali
  • 10 篇 dong chao
  • 9 篇 zhu shunzhi
  • 9 篇 chen xiangyu
  • 8 篇 yu qiao
  • 7 篇 da-han wang
  • 6 篇 he junjun
  • 6 篇 weng wei
  • 6 篇 li hongsheng
  • 6 篇 chao dong
  • 6 篇 chen si
  • 5 篇 liu xin
  • 5 篇 gu jinjin
  • 5 篇 wu yun
  • 5 篇 zhang xu-yao
  • 5 篇 li kunchang
  • 5 篇 liu jianzhuang
  • 5 篇 ren jimmy s.

语言

  • 134 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"机构=Xiamen Key Laboratory of Computer Vision and Pattern Recognition"
137 条 记 录,以下是111-120 订阅
排序:
MUSES: 3D-Controllable Image Generation via Multi-Modal Agent Collaboration
arXiv
收藏 引用
arXiv 2024年
作者: Ding, Yanbo Zhuang, Shaobin Li, Kunchang Yue, Zhengrong Qiao, Yu Wang, Yali Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China Shanghai Artificial Intelligence Laboratory China Shanghai Jiao Tong University China
Despite recent advancements in text-to-image generation, most existing methods struggle to create images with multiple objects and complex spatial relationships in the 3D world. To tackle this limitation, we introduce... 详细信息
来源: 评论
Reflash Dropout in Image Super-Resolution
arXiv
收藏 引用
arXiv 2021年
作者: Kong, Xiangtao Liu, Xina Gu, Jinjin Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab. Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China The University of Sydney Australia Shanghai AI Laboratory Shanghai China
Dropout is designed to relieve the overfitting problem in high-level vision tasks but is rarely applied in low-level vision tasks, like image super-resolution (SR). As a classic regression problem, SR exhibits a diffe... 详细信息
来源: 评论
IFAST: Weakly Supervised Interpretable Face Anti-spoofing from Single-shot Binocular NIR Images
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Jiancheng Zhou, Donghao Chen, Shifeng ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China University of Chinese Academy of Sciences Beijing China Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China The Chinese University of Hong Kong Hong Kong
Single-shot face anti-spoofing (FAS) is a key technique for securing face recognition systems, and it requires only static images as input. However, single-shot FAS remains a challenging and under-explored problem due... 详细信息
来源: 评论
Low-Resolution Action recognition for Tiny Actions Challenge
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Boyu Qiao, Yu Wang, Yali ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Shanghai AI Laboratory Shanghai China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Tiny Actions Challenge focuses on understanding human activities in real-world surveillance. Basically, there are two main difficulties for activity recognition in this scenario. First, human activities are often reco... 详细信息
来源: 评论
UDC-UNet: Under-Display Camera Image Restoration via U-shape Dynamic Network
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Xina Hu, Jinfan Chen, Xiangyu Dong, Chao Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shanghai China University of Chinese Academy of Sciences Shanghai China University of Macau Shanghai China Shanghai AI Laboratory Shanghai China
Under-Display Camera (UDC) has been widely exploited to help smartphones realize full-screen displays. However, as the screen could inevitably affect the light propagation process, the images captured by the UDC syste... 详细信息
来源: 评论
MorphMLP: An Efficient MLP-Like Backbone for Spatial-Temporal Representation Learning
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, David Junhao Li, Kunchang Wang, Yali Chen, Yunpeng Chandra, Shashwat Qiao, Yu Liu, Luoqi Shou, Mike Zheng National University of Singapore Singapore Meitu Inc China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Shanghai AI Laboratory China
Recently, MLP-Like networks have been revived for image recognition. However, whether it is possible to build a generic MLP-Like architecture on video domain has not been explored, due to complex spatial-temporal mode... 详细信息
来源: 评论
Masked Image Training for Generalizable Deep Image Denoising
Masked Image Training for Generalizable Deep Image Denoising
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Haoyu Chen Jinjin Gu Yihao Liu Salma Abdel Magid Chao Dong Qiong Wang Hanspeter Pfister Lei Zhu The Hong Kong University of Science and Technology (Guangzhou) Shanghai AI Lab The University of Sydney ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Harvard University Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences The Hong Kong University of Science and Technology
When capturing and storing images, devices inevitably introduce noise. Reducing this noise is a critical task called image denoising. Deep learning has become the de facto method for image denoising, especially with t...
来源: 评论
Regional attention with architecture-rebuilt 3D network for RGB-D gesture recognition
arXiv
收藏 引用
arXiv 2021年
作者: Zhou, Benjia Li, Yunan Wan, Jun Macau University of Science and Technology China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China School of Computer Science and Technology Xidian Univeristy China Xi'an Key Laboratory of Big Data and Intelligent Vision China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China
Human gesture recognition has drawn much attention in the area of computer vision. However, the performance of gesture recognition is always influenced by some gesture-irrelevant factors like the background and the cl... 详细信息
来源: 评论
A new journey from SDRTV to HDRTV
arXiv
收藏 引用
arXiv 2021年
作者: Chen, Xiangyu Zhang, Zhengwen Ren, Jimmy S. Tian, Lynhoo Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shanghai China SenseTime Research Shanghai China Qing Yuan Research Institute Shanghai Jiao Tong University Shanghai China Shanghai AI Laboratory Shanghai China
Nowadays modern displays are capable to render video content with high dynamic range (HDR) and wide color gamut (WCG). However, most available resources are still in standard dynamic range (SDR). Therefore, there is a... 详细信息
来源: 评论
Cross Domain Object Detection by Target-Perceived Dual Branch Distillation
arXiv
收藏 引用
arXiv 2022年
作者: He, Mengzhe Wang, Yali Wu, Jiaxi Wang, Yiru Li, Hanqing Li, Bo Gan, Weihao Wu, Wei Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China SenseTime Research University of Chinese Academy of Science China Shanghai AI Laboratory Shanghai China Beihang University China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Cross domain object detection is a realistic and challenging task in the wild. It suffers from performance degradation due to large shift of data distributions and lack of instance-level annotations in the target doma... 详细信息
来源: 评论