咨询与建议

限定检索结果

文献类型

  • 73 篇 会议
  • 62 篇 期刊文献

馆藏范围

  • 135 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 103 篇 工学
    • 72 篇 计算机科学与技术...
    • 67 篇 软件工程
    • 33 篇 信息与通信工程
    • 23 篇 生物工程
    • 22 篇 光学工程
    • 11 篇 生物医学工程(可授...
    • 9 篇 机械工程
    • 8 篇 化学工程与技术
    • 6 篇 控制科学与工程
    • 4 篇 电气工程
    • 4 篇 建筑学
    • 4 篇 交通运输工程
    • 3 篇 仪器科学与技术
    • 3 篇 电子科学与技术(可...
    • 3 篇 土木工程
    • 3 篇 安全科学与工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 测绘科学与技术
  • 63 篇 理学
    • 32 篇 物理学
    • 23 篇 生物学
    • 19 篇 数学
    • 8 篇 化学
    • 7 篇 统计学(可授理学、...
    • 1 篇 大气科学
  • 33 篇 管理学
    • 23 篇 图书情报与档案管...
    • 13 篇 管理科学与工程(可...
  • 6 篇 医学
    • 6 篇 临床医学
    • 5 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 农学

主题

  • 12 篇 convolution
  • 5 篇 deep learning
  • 5 篇 semantics
  • 4 篇 distillation
  • 4 篇 pixels
  • 3 篇 face recognition
  • 3 篇 computer vision
  • 3 篇 image reconstruc...
  • 3 篇 training
  • 2 篇 image enhancemen...
  • 2 篇 semantic segment...
  • 2 篇 hidden markov mo...
  • 2 篇 generative adver...
  • 2 篇 non-local
  • 2 篇 long short-term ...
  • 2 篇 image segmentati...
  • 2 篇 signal encoding
  • 2 篇 handwritten math...
  • 2 篇 vectors
  • 2 篇 data mining

机构

  • 23 篇 fujian key labor...
  • 19 篇 shanghai ai labo...
  • 18 篇 school of comput...
  • 17 篇 shenzhen key lab...
  • 14 篇 university of ch...
  • 12 篇 xiamen key labor...
  • 11 篇 college of compu...
  • 11 篇 sensetime resear...
  • 11 篇 shanghai artific...
  • 9 篇 shenzhen key lab...
  • 8 篇 department of co...
  • 8 篇 fujian key labor...
  • 7 篇 department of in...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 shenzhen key lab...
  • 6 篇 university of ma...
  • 5 篇 shenzhen key lab...
  • 5 篇 fujian key labor...
  • 5 篇 college of compu...

作者

  • 22 篇 qiao yu
  • 20 篇 wang da-han
  • 13 篇 wang yali
  • 10 篇 dong chao
  • 9 篇 zhu shunzhi
  • 9 篇 chen xiangyu
  • 8 篇 yu qiao
  • 7 篇 da-han wang
  • 6 篇 he junjun
  • 6 篇 weng wei
  • 6 篇 li hongsheng
  • 6 篇 chao dong
  • 6 篇 chen si
  • 5 篇 liu xin
  • 5 篇 gu jinjin
  • 5 篇 wu yun
  • 5 篇 zhang xu-yao
  • 5 篇 li kunchang
  • 5 篇 liu jianzhuang
  • 5 篇 ren jimmy s.

语言

  • 132 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"机构=Xiamen Key Laboratory of Computer Vision and Pattern Recognition"
135 条 记 录,以下是81-90 订阅
排序:
Locating high-density clusters with noisy queries
Locating high-density clusters with noisy queries
收藏 引用
International Conference on pattern recognition
作者: Chen Cao Shifeng Chen Changqing Zou Jianzhuang Liu Shenzhen Key Laboratory for Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Department of Information Engineering Chinese University of Hong Kong China
Semi-supervised learning (SSL) relies on a few labeled samples to explore data's intrinsic structure through pairwise smooth transduction. The performance of SSL mainly depends on two folds: (1) the accuracy of la... 详细信息
来源: 评论
FGCLR: An Effective Graph Contrastive Learning For Recommendation
Journal of Network Intelligence
收藏 引用
Journal of Network Intelligence 2024年 第1期9卷 289-299页
作者: Wang, Hua-Wei Guo, Yi-Jing Weng, Wei Wu, Liu-Xi Yan, Zhong-Qi Key Laboratory of Intelligent Manufacturing and Industrial Internet Technology Fujian Province University Xiamen University Tan Kah Kee College Zhangzhou 363105 China College of Computer and Information Engineering Xiamen University of Technology Fujian Key Laboratory of Pattern Recognition and Image Understanding Xiamen361024 China Xiamen University Tan Kah Kee College Zhangzhou 363105 China College of Computer and Information Engineering Xiamen University of Technology Xiamen361024 China
Graph contrastive learning(GCL) has become a prevalent technique for graph-based recommendation. Most GCL-based methods perform stochastic augmentation on the user-item interaction graph which may change the intrinsic... 详细信息
来源: 评论
Digging into uncertainty in self-supervised multi-view stereo
arXiv
收藏 引用
arXiv 2021年
作者: Xu, Hongbin Zhou, Zhipeng Wang, Yali Kang, Wenxiong Sun, Baigui Li, Hao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences South China University of Technology Shanghai AI Laboratory Alibaba Group Pazhou Laboratory
Self-supervised Multi-view stereo (MVS) with a pretext task of image reconstruction has achieved significant progress recently. However, previous methods are built upon intuitions, lacking comprehensive explanations a... 详细信息
来源: 评论
Learning to predict context-adaptive convolution for semantic segmentation
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Jianbo He, Junjun Ren, Jimmy S. Qiao, Yu Li, Hongsheng CUHK-SenseTime Joint Laboratory Chinese University of Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SenseTime Research
Long-range contextual information is essential for achieving high-performance semantic segmentation. Previous feature re-weighting methods [34] demonstrate that using global context for re-weighting feature channels c... 详细信息
来源: 评论
Learning dynamical human-joint affinity for 3D pose estimation in videos
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Junhao Wang, Yali Zhou, Zhipeng Luan, Tianyu Wang, Zhe Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of California Irvine United States Shanghai AI Laboratory Shanghai China
Graph Convolution Network (GCN) has been successfully used for 3D human pose estimation in videos. However, it is often built on the fixed human-joint affinity, according to human skeleton. This may reduce adaptation ... 详细信息
来源: 评论
DegAE: A New Pretraining Paradigm for Low-Level vision
DegAE: A New Pretraining Paradigm for Low-Level Vision
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Yihao Liu Jingwen He Jinjin Gu Xiangtao Kong Yu Qiao Chao Dong Shanghai Artificial Intelligence Laboratory ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences The University of Sydney
Self-supervised pretraining has achieved remarkable success in high-level vision, but its application in low-level vision remains ambiguous and not well-established. What is the primitive intention of pretraining? Wha...
来源: 评论
Hierarchical Local Global Transformer for Point Clouds Analysis
SSRN
收藏 引用
SSRN 2023年
作者: Li, Dilong Zheng, Shenghong Chen, Ziyi Li, Xiang Wang, Lanying Du, Jixiang College of Computer Science and Technology Fujian Key Laboratory of Big Data Intelligence and Security Xiamen Key Laboratory of Computer Vision and Pattern Recognition Xiamen Key Laboratory of Data Security and Blockchain Technology Huaqiao University FJ Xiamen361021 China School of Economics and Finance Huaqiao University FJ Quanzhou362021 China Department of Geography and Environmental Management University of Waterloo WaterlooONN2L 3G1 Canada
Transformer networks have demonstrated remarkable performance in point cloud analysis. However, achieving a balance between local regional context and global long-range context learning remains a significant challenge... 详细信息
来源: 评论
Compressed sensing ensemble classifier for human detection
Compressed sensing ensemble classifier for human detection
收藏 引用
4th International Conference on Intelligence Science and Big Data Engineering, IScIDE 2013
作者: Zhang, Baochang Liu, Juan Gao, Yongsheng Liu, Jianzhuang Science and Technology on Aircraft Control Laboratory School of Automation Science and Electrical Engineering BeiHang University Beijing 100191 China School of Engineering Griffith University Australia Shenzhen Key Lab for Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Department of Information Engineering Chinese University of Hong Kong Hong Kong Hong Kong
This paper proposes a novel Compressed Sensing Ensemble Classifier (CSEC) for human detection. The proposed CSEC employs the compressed sensing technique to get a more sparse model with a more reasonable selection of ... 详细信息
来源: 评论
Similarity-based Attention Embedding Approach for Attributed Graph Clustering
Journal of Network Intelligence
收藏 引用
Journal of Network Intelligence 2022年 第4期7卷 848-861页
作者: Weng, Wei Li, Tong Liao, Jian-Chao Guo, Feng Chen, Fen Wei, Bo-Wen College of Computer and Information Engineering Xiamen University of Technology Fujian Key Laboratory of Pattern Recognition and Image Understanding Xiamen361024 China College of Computer and Information Engineering Xiamen University of Technology Xiamen361024 China Fujian Newland Auto-ID Tech. Co. Ltd Fuzhou350015 China Xiamen Fuyun Information Tech. Co. Ltd Xiamen361008 China
Graph clustering is a fundamental method for studying complex networks. Some existing approaches focus on the graph data without attributed information. However, graph data in the real world generally have attribute i... 详细信息
来源: 评论
Generate Like Experts: Multi-Stage Font Generation by Incorporating Font Transfer Process into Diffusion Models
Generate Like Experts: Multi-Stage Font Generation by Incorp...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Bin Fu Fanghua Yu Anran Liu Zixuan Wang Jie Wen Junjun He Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences The University of Hong Kong Harbin Institute of Technology Shenzhen Shanghai Artificial Intelligence Laboratory
Few-shot font generation (FFG) produces stylized font images with a limited number of reference samples, which can significantly reduce labor costs in manual font designs. Most existing FFG methods follow the style-co... 详细信息
来源: 评论