咨询与建议

限定检索结果

文献类型

  • 73 篇 会议
  • 62 篇 期刊文献

馆藏范围

  • 135 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 103 篇 工学
    • 72 篇 计算机科学与技术...
    • 67 篇 软件工程
    • 33 篇 信息与通信工程
    • 23 篇 生物工程
    • 22 篇 光学工程
    • 11 篇 生物医学工程(可授...
    • 9 篇 机械工程
    • 8 篇 化学工程与技术
    • 6 篇 控制科学与工程
    • 4 篇 电气工程
    • 4 篇 建筑学
    • 4 篇 交通运输工程
    • 3 篇 仪器科学与技术
    • 3 篇 电子科学与技术(可...
    • 3 篇 土木工程
    • 3 篇 安全科学与工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 测绘科学与技术
  • 63 篇 理学
    • 32 篇 物理学
    • 23 篇 生物学
    • 19 篇 数学
    • 8 篇 化学
    • 7 篇 统计学(可授理学、...
    • 1 篇 大气科学
  • 33 篇 管理学
    • 23 篇 图书情报与档案管...
    • 13 篇 管理科学与工程(可...
  • 6 篇 医学
    • 6 篇 临床医学
    • 5 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 农学

主题

  • 12 篇 convolution
  • 5 篇 deep learning
  • 5 篇 semantics
  • 4 篇 distillation
  • 4 篇 pixels
  • 3 篇 face recognition
  • 3 篇 computer vision
  • 3 篇 image reconstruc...
  • 3 篇 training
  • 2 篇 image enhancemen...
  • 2 篇 semantic segment...
  • 2 篇 hidden markov mo...
  • 2 篇 generative adver...
  • 2 篇 non-local
  • 2 篇 long short-term ...
  • 2 篇 image segmentati...
  • 2 篇 signal encoding
  • 2 篇 handwritten math...
  • 2 篇 vectors
  • 2 篇 data mining

机构

  • 23 篇 fujian key labor...
  • 19 篇 shanghai ai labo...
  • 18 篇 school of comput...
  • 17 篇 shenzhen key lab...
  • 14 篇 university of ch...
  • 12 篇 xiamen key labor...
  • 11 篇 college of compu...
  • 11 篇 sensetime resear...
  • 11 篇 shanghai artific...
  • 9 篇 shenzhen key lab...
  • 8 篇 department of co...
  • 8 篇 fujian key labor...
  • 7 篇 department of in...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 shenzhen key lab...
  • 6 篇 university of ma...
  • 5 篇 shenzhen key lab...
  • 5 篇 fujian key labor...
  • 5 篇 college of compu...

作者

  • 22 篇 qiao yu
  • 20 篇 wang da-han
  • 13 篇 wang yali
  • 10 篇 dong chao
  • 9 篇 zhu shunzhi
  • 9 篇 chen xiangyu
  • 8 篇 yu qiao
  • 7 篇 da-han wang
  • 6 篇 he junjun
  • 6 篇 weng wei
  • 6 篇 li hongsheng
  • 6 篇 chao dong
  • 6 篇 chen si
  • 5 篇 liu xin
  • 5 篇 gu jinjin
  • 5 篇 wu yun
  • 5 篇 zhang xu-yao
  • 5 篇 li kunchang
  • 5 篇 liu jianzhuang
  • 5 篇 ren jimmy s.

语言

  • 132 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"机构=Xiamen Key Laboratory of Computer Vision and Pattern Recognition"
135 条 记 录,以下是81-90 订阅
排序:
Blueprint Separable Residual Network for Efficient Image Super-Resolution
arXiv
收藏 引用
arXiv 2022年
作者: Li, Zheyuan Liu, Yingqi Chen, Xiangyu Cai, Haoming Gu, Jinjin Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Macau China Shanghai AI Laboratory Shanghai China The University of Sydney Australia
Recent advances in single image super-resolution (SISR) have achieved extraordinary performance, but the computational cost is too heavy to apply in edge devices. To alleviate this problem, many novel and effective so... 详细信息
来源: 评论
LVAgent: Long Video Understanding by Multi-Round Dynamical Collaboration of MLLM Agents
arXiv
收藏 引用
arXiv 2025年
作者: Chen, Boyu Yue, Zhengrong Chen, Siran Wang, Zikang Liu, Yang Li, Peng Wang, Yali Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China Tsinghua University Beijing China Dept. of Comp. Sci. & Tech. Institute for AI Tsinghua University Beijing China Shanghai Artificial Intelligence Laboratory China Shanghai Jiao Tong University China
Existing Multimodal Large Language Models (MLLMs) encounter significant challenges in modeling the temporal context within long videos. Currently, mainstream Agent-based methods use external tools (e.g., search engine... 详细信息
来源: 评论
Periodic Action Temporal Localization Method Based on Two-Path Architecture for Product Counting in Sewing Video  15th
Periodic Action Temporal Localization Method Based on Two-Pa...
收藏 引用
15th International Conference on Intelligent Computing, ICIC 2019
作者: Huang, Jin-Long Zhang, Hong-Bo Du, Ji-Xiang Zheng, Jian-Feng Peng, Xiao-Xiao Department of Computer Science and Technology Huaqiao University Xiamen China Xiamen Key Laboratory of Computer Vision and Pattern Recognition Huaqiao University Xiamen China
Automatically product counting in the handmade process plays a vital role in the manufacturing industry, especially at the sewing industry. Nevertheless, there is currently a few methods to count the product number in... 详细信息
来源: 评论
FDDH: Fast discriminative discrete hashing for large-scale cross-modal retrieval
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Xin Wang, Xingzhi Cheung, Yiu-Ming Department of Computer Science Huaqiao University Xiamen Key Laboratory of Computer Vision and Pattern Recognition Fujian Key Laboratory of Big Data Intelligence and Security Xiamen361021 China School of Electronics and Information Technology Sun Yat-sen University Guangzhou510006 China Department of Computer Science Hong Kong Baptist University Hong Kong Hong Kong
Cross-modal hashing, favored for its effectiveness and efficiency, has received wide attention to facilitating efficient retrieval across different modalities. Nevertheless, most existing methods do not sufficiently e... 详细信息
来源: 评论
Low-Resolution Action recognition for Tiny Actions Challenge
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Boyu Qiao, Yu Wang, Yali ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Shanghai AI Laboratory Shanghai China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Tiny Actions Challenge focuses on understanding human activities in real-world surveillance. Basically, there are two main difficulties for activity recognition in this scenario. First, human activities are often reco... 详细信息
来源: 评论
UDC-UNet: Under-Display Camera Image Restoration via U-shape Dynamic Network
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Xina Hu, Jinfan Chen, Xiangyu Dong, Chao Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shanghai China University of Chinese Academy of Sciences Shanghai China University of Macau Shanghai China Shanghai AI Laboratory Shanghai China
Under-Display Camera (UDC) has been widely exploited to help smartphones realize full-screen displays. However, as the screen could inevitably affect the light propagation process, the images captured by the UDC syste... 详细信息
来源: 评论
Digging into Uncertainty in Self-supervised Multi-view Stereo
Digging into Uncertainty in Self-supervised Multi-view Stere...
收藏 引用
International Conference on computer vision (ICCV)
作者: Hongbin Xu Zhipeng Zhou Yali Wang Wenxiong Kang Baigui Sun Hao Li Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences South China University of Technology Alibaba Group Pazhou Laboratory Shanghai AI Laboratory
Self-supervised Multi-view stereo (MVS) with a pretext task of image reconstruction has achieved significant progress recently. However, previous methods are built upon intuitions, lacking comprehensive explanations a... 详细信息
来源: 评论
Digging into uncertainty in self-supervised multi-view stereo
arXiv
收藏 引用
arXiv 2021年
作者: Xu, Hongbin Zhou, Zhipeng Wang, Yali Kang, Wenxiong Sun, Baigui Li, Hao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences South China University of Technology Shanghai AI Laboratory Alibaba Group Pazhou Laboratory
Self-supervised Multi-view stereo (MVS) with a pretext task of image reconstruction has achieved significant progress recently. However, previous methods are built upon intuitions, lacking comprehensive explanations a... 详细信息
来源: 评论
NTIRE 2023 Image Shadow Removal Challenge Report
NTIRE 2023 Image Shadow Removal Challenge Report
收藏 引用
2023 IEEE/CVF Conference on computer vision and pattern recognition Workshops, CVPRW 2023
作者: Vasluianu, Florin-Alexandru Seizinger, Tim Timofte, Radu Cui, Shuhao Huang, Junshi Tian, Shuman Fan, Mingyuan Zhang, Jiaqi Zhu, Li Wei, Xiaoming Wei, Xiaolin Luo, Ziwei Gustafsson, Fredrik K. Zhao, Zheng Sjölund, Jens Schön, Thomas B. Dong, Xiaoyi Zhang, Xi Sheryl Li, Chenghua Leng, Cong Yeo, Woon-Ha Oh, Wang-Taek Lee, Yeo-Reum Ryu, Han-Cheol Luo, Jinting Jiang, Chengzhi Han, Mingyan Wu, Qi Lin, Wenjie Yu, Lei Li, Xinpeng Jiang, Ting Fan, Haoqiang Liu, Shuaicheng Xu, Shuning Song, Binbin Chen, Xiangyu Zhang, Shile Zhou, Jiantao Zhang, Zhao Zhao, Suiyi Zheng, Huan Gao, Yangcheng Wei, Yanyan Wang, Bo Ren, Jiahuan Luo, Yan Kondo, Yuki Miyata, Riku Yasue, Fuma Naruki, Taito Ukita, Norimichi Chang, Hua-En Yang, Hao-Hsiang Chen, Yi-Chung Chiang, Yuan-Chun Huang, Zhi-Kai Chen, Wei-Ting Chen, I-Hsiang Hsieh, Chia-Hsuan Kuo, Sy-Yen Xianwei, Li Fu, Huiyuan Liu, Chunlin Ma, Huadong Fu, Binglan He, Huiming Wang, Mengjia She, Wenxuan Liu, Yu Nathan, Sabari Kansal, Priya Zhang, Zhongjian Yang, Huabin Wang, Yan Zhang, Yanru Phutke, Shruti S. Kulkarni, Ashutosh Khan, Md Raqib Murala, Subrahmanyam Vipparthi, Santosh Kumar Ye, Heng Liu, Zixi Yang, Xingyi Liu, Songhua Wu, Yinwei Jing, Yongcheng Yu, Qianhao Zheng, Naishan Huang, Jie Long, Yuhang Yao, Mingde Zhao, Feng Zhao, Bowen Ye, Nan Shen, Ning Cao, Yanpeng Xiong, Tong Xia, Weiran Li, Dingwen Xia, Shuchen Computer Vision Lab Ifi Caidas University of Würzburg Germany Computer Vision Lab Eth Zürich Switzerland Meituan Group China Department of Information Technology Uppsala University Sweden Institute of Automation Chinese Academy of Sciences Beijing China Nanjing China Maicro Nanjing China Department of Artificial Intelligence Convergence Sahmyook University Seoul Korea Republic of Megvii Technology China University of Electronic Science and Technology of China China University of Macau China China Toyota Technological Institute Japan Graduate Institute of Electronics Engineering National Taiwan University Taiwan Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan ServiceNow United States Beijing University of Post and Teleconmunication Beijing China Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education China Couger Inc. Computer Vision and Pattern Recognition Lab Indian Institute of Technology Ropar Punjab Rupnagar India Research Institute Singapore National University of Singapore Singapore Research Institute Singapore University of Sydney Australia Brain-Inspired Vision Laboratory Information Science and Technology Institution University of Science and Technology of China China State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou310027 China Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou310027 China South China University of Technology China
This work reviews the results of the NTIRE 2023 Challenge on Image Shadow Removal. The described set of solutions were proposed for a novel dataset, which captures a wide range of object-light interactions. It consist... 详细信息
来源: 评论
Learning dynamical human-joint affinity for 3D pose estimation in videos
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Junhao Wang, Yali Zhou, Zhipeng Luan, Tianyu Wang, Zhe Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of California Irvine United States Shanghai AI Laboratory Shanghai China
Graph Convolution Network (GCN) has been successfully used for 3D human pose estimation in videos. However, it is often built on the fixed human-joint affinity, according to human skeleton. This may reduce adaptation ... 详细信息
来源: 评论