咨询与建议

限定检索结果

文献类型

  • 161 篇 会议
  • 51 篇 期刊文献

馆藏范围

  • 212 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 128 篇 工学
    • 85 篇 计算机科学与技术...
    • 78 篇 软件工程
    • 55 篇 信息与通信工程
    • 25 篇 生物工程
    • 20 篇 光学工程
    • 16 篇 化学工程与技术
    • 14 篇 生物医学工程(可授...
    • 10 篇 电气工程
    • 9 篇 仪器科学与技术
    • 9 篇 电子科学与技术(可...
    • 8 篇 机械工程
    • 8 篇 控制科学与工程
    • 6 篇 安全科学与工程
    • 5 篇 材料科学与工程(可...
    • 4 篇 动力工程及工程热...
    • 4 篇 土木工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 建筑学
  • 81 篇 理学
    • 36 篇 物理学
    • 27 篇 数学
    • 27 篇 生物学
    • 18 篇 化学
    • 9 篇 统计学(可授理学、...
    • 5 篇 大气科学
  • 36 篇 管理学
    • 27 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
  • 9 篇 医学
    • 9 篇 基础医学(可授医学...
    • 9 篇 临床医学
    • 8 篇 药学(可授医学、理...
  • 4 篇 教育学
    • 4 篇 教育学
  • 1 篇 农学

主题

  • 26 篇 feature extracti...
  • 12 篇 deep learning
  • 12 篇 training
  • 11 篇 accuracy
  • 10 篇 neural networks
  • 10 篇 convolution
  • 9 篇 speech processin...
  • 9 篇 semantics
  • 6 篇 transformers
  • 6 篇 speech enhanceme...
  • 6 篇 noise
  • 6 篇 data models
  • 6 篇 adaptation model...
  • 5 篇 object detection
  • 5 篇 noise reduction
  • 5 篇 time series anal...
  • 5 篇 attention mechan...
  • 4 篇 image enhancemen...
  • 4 篇 raman spectrosco...
  • 4 篇 noise measuremen...

机构

  • 54 篇 school of comput...
  • 43 篇 xinjiang key lab...
  • 27 篇 key laboratory o...
  • 16 篇 school of inform...
  • 13 篇 department of el...
  • 10 篇 xinjiang key lab...
  • 9 篇 college of softw...
  • 9 篇 school of intell...
  • 8 篇 school of inform...
  • 8 篇 college of infor...
  • 7 篇 department of el...
  • 7 篇 key laboratory o...
  • 7 篇 key laboratory o...
  • 7 篇 china mobile res...
  • 6 篇 xinjiang key lab...
  • 6 篇 school of comput...
  • 6 篇 college of softw...
  • 5 篇 key laboratory o...
  • 5 篇 xinjiang key lab...
  • 4 篇 college of compu...

作者

  • 23 篇 jia zhenhong
  • 23 篇 hamdulla askar
  • 13 篇 shi fei
  • 12 篇 liang he
  • 12 篇 gang zhou
  • 12 篇 he liang
  • 12 篇 askar hamdulla
  • 12 篇 zhenhong jia
  • 11 篇 wang jiajia
  • 11 篇 zhou gang
  • 9 篇 ying hu
  • 9 篇 chen chen
  • 9 篇 lv xiaoyi
  • 9 篇 qin xizhong
  • 9 篇 zhihua huang
  • 8 篇 fei shi
  • 8 篇 huang xiaohui
  • 8 篇 chen cheng
  • 7 篇 hu ying
  • 7 篇 ablimit mijit

语言

  • 208 篇 英文
  • 3 篇 其他
  • 2 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 意大利文
检索条件"机构=Xinjiang Key Laboratory of Signal Detection and Processing"
212 条 记 录,以下是1-10 订阅
排序:
WDE-TransUNet: Brain Tumor Segmentation in MRI Images Utilizing Detail Enhancement and Transformers  24
WDE-TransUNet: Brain Tumor Segmentation in MRI Images Utiliz...
收藏 引用
5th International Symposium on Artificial Intelligence for Medicine Science, ISAIMS 2024
作者: Ni, Xinhu Mo, Jiaqing Xinjiang Key Laboratory of Signal Detection and Processing School of Computer Science and Technology Xinjiang Urumqi China
WDE-TransUNet is a novel neural network architecture specifically designed for robust and precise semantic segmentation in medical imaging. This method addresses the challenges posed by inconsistent image quality, div... 详细信息
来源: 评论
Joint Optimization of Maximum Achievable Rate in SWIPT Systems Assisted by Active STAR-RIS  18th
Joint Optimization of Maximum Achievable Rate in SWIPT Sys...
收藏 引用
18th International Conference on Wireless Artificial Intelligent Computing Systems and Applications, WASA 2024
作者: Yang, Junlong Qin, Xizhong Jia, Zhenhong Mao, Lamu School of Computer Science and Technology XJU Xinjiang China Xinjiang Key Laboratory of Signal Detection and Processing Wulumuqi China
This investigation focuses on a simultaneous wireless information and power transfer (SWIPT) system, significantly enhanced by an active simultaneously transmitting and reflecting reconfigurable intelligent surface (a... 详细信息
来源: 评论
TBIA-DBNet: A Two-Branch Image-Adaptive DBNet for Scene Text detection in Real-World Foggy Scenes  27th
TBIA-DBNet: A Two-Branch Image-Adaptive DBNet for Scene Tex...
收藏 引用
27th International Conference on Pattern Recognition, ICPR 2024
作者: Liu, Zhaoxi Zhou, Gang He, Runlin Zhang, Mengnan Jia, Zhenhong Ma, Jing Key Laboratory of Signal Detection and Processing Department of Computer Science and Technology Xinjiang University Urumqi China
Though deep learning-based scene text detection methods have achieved promising results on conventional datasets, these methods are unable to maintain optimal performance in adverse weather conditions, such as foggy w... 详细信息
来源: 评论
Deformable Multi-Scale Network for Snow Removal in Video  27th
Deformable Multi-Scale Network for Snow Removal in Video
收藏 引用
27th International Conference on Pattern Recognition, ICPR 2024
作者: He, Runlin Zhou, Gang Xue, Tianhao Liu, Zhaoxi Jia, Zhenhong Key Laboratory of Signal Detection and Processing Department of Computer Science and Technology Xinjiang University Urumqi China
Snowfall severely degrades outdoor video visibility while reducing the performance of subsequent vision tasks. Although video recovery methods based on deep learning have achieved amazing accomplishments, video snow r... 详细信息
来源: 评论
Shared Vision Transformer Helps Scene Text Retrieval  4th
Shared Vision Transformer Helps Scene Text Retrieval
收藏 引用
4th International Conference on Pattern Recognition and Artificial Intelligence, ICPRAI 2024
作者: Luo, Hailong Ibrayim, Mayire Hamdulla, Askar Deng, Qilin School of Computer Science and Technology Xinjiang University Urumqi830017 China Xinjiang Key Laboratory of Signal Detection and Processing Urumqi830017 China
The scene text retrieval system can search all the images containing the query text in the gallery based on the input query text and locate the position of the query text at the same time. The current state-... 详细信息
来源: 评论
E-RNS: Enhancing Negative Sample Quality from Gradient Perspective for Graph Recommendation
E-RNS: Enhancing Negative Sample Quality from Gradient Persp...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and signal processing, ICASSP 2025
作者: Feng, Qiangsheng Qin, Jiwei Ma, Jie School of Computer Science and Technology Xinjiang University China Key Laboratory of Signal Detection and Processing China
Bayesian Personalized Ranking (BPR) is a widely used optimization function in GNN-based recommender systems, and negative samples are usually obtained through the Random Negative Sampling (RNS) method during BPR train... 详细信息
来源: 评论
MFDPonzi: Detecting Ethereum Ponzi Schemes Using Static Features from Novel Opcode Sequences
MFDPonzi: Detecting Ethereum Ponzi Schemes Using Static Feat...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and signal processing, ICASSP 2025
作者: Cao, Longwei Qin, Jiwei Zhang, Xuzi College of Computer Science and Technology Xinjiang University Urumqi China Xinjiang Key Laboratory of Signal Detection and Processing Xinjiang University Urumqi China
Ethereum, the first blockchain platform to support smart contracts, has become a target for various cybercrimes, particularly financial frauds like Ponzi schemes. Ponzi schemes on Ethereum are known as Smart Ponzi Sch... 详细信息
来源: 评论
Arbitrary-Shape Text Spotting Based on Global, Pixel and Sequence Semantics  4th
Arbitrary-Shape Text Spotting Based on Global, Pixel and S...
收藏 引用
4th International Conference on Pattern Recognition and Artificial Intelligence, ICPRAI 2024
作者: Zhang, Chunhu Ibrayim, Mayire Hamdulla, Askar Deng, Qilin Xinjiang Key Laboratory of Signal Detection and Processing Urumqi China Xinjiang University School of Information Science and Engineering Urumqi China Xinjiang University College of Future Technology Urumqi China
The field of end-to-end text spotting has garnered significant interest in recent years, propelled by the revealed intrinsic synergies between scene text detection and recognition. While advancements have been made, t... 详细信息
来源: 评论
CAU-Net: U-Shaped medical image segmentation network based on compound attention
CAU-Net: U-Shaped medical image segmentation network based o...
收藏 引用
2024 International Conference on Computer Vision and Image processing, CVIP 2024
作者: Liu, Jiaqi Mo, Jiaqing Xinjiang University School of Computer Science and Technology Key Laboratory of Signal Detection and Processing No.777 Huarui Street Shuimogou District Xinjiang Urumqi830017 China
In the context of the ongoing advancement of deep learning technologies, traditional image segmentation approaches are gradually become difficult for adapted to the requirements of medical imaging. The importance of m... 详细信息
来源: 评论
Difference Bonds Consistency and Complementarity to Enhance Multimodal Representation Learning
Difference Bonds Consistency and Complementarity to Enhance ...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and signal processing, ICASSP 2025
作者: He, Congbing Song, Sensen Jia, Zhenhong Zhao, Hui Xinjiang Uygur Autonomous Region Signal Detection and Processing Key Laboratory School of Computer Science and Technology Xinjiang University Urumqi830046 China
In the field of multimodal representation learning, existing research has primarily focused on exploring modal consistency and modal complementarity, while overlooking the positive role of modal difference. Moreover, ... 详细信息
来源: 评论