咨询与建议

限定检索结果

文献类型

  • 161 篇 会议
  • 51 篇 期刊文献

馆藏范围

  • 212 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 128 篇 工学
    • 85 篇 计算机科学与技术...
    • 78 篇 软件工程
    • 55 篇 信息与通信工程
    • 25 篇 生物工程
    • 20 篇 光学工程
    • 16 篇 化学工程与技术
    • 14 篇 生物医学工程(可授...
    • 10 篇 电气工程
    • 9 篇 仪器科学与技术
    • 9 篇 电子科学与技术(可...
    • 8 篇 机械工程
    • 8 篇 控制科学与工程
    • 6 篇 安全科学与工程
    • 5 篇 材料科学与工程(可...
    • 4 篇 动力工程及工程热...
    • 4 篇 土木工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 建筑学
  • 82 篇 理学
    • 36 篇 物理学
    • 28 篇 数学
    • 27 篇 生物学
    • 18 篇 化学
    • 10 篇 统计学(可授理学、...
    • 5 篇 大气科学
  • 36 篇 管理学
    • 27 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
  • 9 篇 医学
    • 9 篇 基础医学(可授医学...
    • 9 篇 临床医学
    • 8 篇 药学(可授医学、理...
  • 4 篇 教育学
    • 4 篇 教育学
  • 1 篇 农学

主题

  • 26 篇 feature extracti...
  • 12 篇 deep learning
  • 12 篇 training
  • 11 篇 accuracy
  • 10 篇 neural networks
  • 10 篇 convolution
  • 9 篇 speech processin...
  • 9 篇 semantics
  • 6 篇 transformers
  • 6 篇 speech enhanceme...
  • 6 篇 noise
  • 6 篇 data models
  • 6 篇 adaptation model...
  • 5 篇 object detection
  • 5 篇 noise reduction
  • 5 篇 time series anal...
  • 5 篇 attention mechan...
  • 4 篇 image enhancemen...
  • 4 篇 raman spectrosco...
  • 4 篇 noise measuremen...

机构

  • 54 篇 school of comput...
  • 43 篇 xinjiang key lab...
  • 27 篇 key laboratory o...
  • 16 篇 school of inform...
  • 13 篇 department of el...
  • 10 篇 xinjiang key lab...
  • 9 篇 college of softw...
  • 9 篇 school of intell...
  • 8 篇 school of inform...
  • 8 篇 college of infor...
  • 7 篇 department of el...
  • 7 篇 key laboratory o...
  • 7 篇 key laboratory o...
  • 7 篇 china mobile res...
  • 6 篇 xinjiang key lab...
  • 6 篇 school of comput...
  • 6 篇 college of softw...
  • 5 篇 key laboratory o...
  • 5 篇 xinjiang key lab...
  • 4 篇 college of compu...

作者

  • 23 篇 jia zhenhong
  • 23 篇 hamdulla askar
  • 13 篇 shi fei
  • 12 篇 liang he
  • 12 篇 gang zhou
  • 12 篇 he liang
  • 12 篇 askar hamdulla
  • 12 篇 zhenhong jia
  • 11 篇 wang jiajia
  • 11 篇 zhou gang
  • 10 篇 lv xiaoyi
  • 10 篇 qin xizhong
  • 9 篇 ying hu
  • 9 篇 chen chen
  • 9 篇 chen cheng
  • 9 篇 zhihua huang
  • 8 篇 fei shi
  • 8 篇 huang xiaohui
  • 8 篇 qin jiwei
  • 7 篇 hu ying

语言

  • 208 篇 英文
  • 3 篇 其他
  • 2 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 意大利文
检索条件"机构=Xinjiang Signal Detection and Processing Key Laboratory"
212 条 记 录,以下是141-150 订阅
排序:
Printed Multilingual Document Image Retrieval Based On Improved SURF  23
Printed Multilingual Document Image Retrieval Based On Impro...
收藏 引用
Proceedings of the 2023 12th International Conference on Computing and Pattern Recognition
作者: Xiangqian Zhao Xuebin Xu Reyihanguli Kasenmu Xinjiang University China Xinjiang Key Laboratory of Signal Detection and Processing(Xinjiang University) Xinjiang University China Xinjiang Teachers college China
In the process of printed document image retrieval, the traditional algorithm, SURF algorithm combined with violent matching, has the problems of low retrieval accuracy and low retrieval efficiency. This paper propose... 详细信息
来源: 评论
Obstacle detection in Off-road Environments Based on LiDAR
Obstacle Detection in Off-road Environments Based on LiDAR
收藏 引用
Pattern Recognition and Machine Learning (PRML), IEEE International Conference on
作者: Arzigul Ahat Eksan Firkat Tayir Mijit Askar Hamdulla School of Information Science and Engineering Xinjiang University of China Xinjiang Key Laboratory of Signal Detection and Processing Urumqi China
Mapping off-road terrain is a challenging task, especially when compared to urban terrain. The complexity and roughness of off-road terrain make it difficult to achieve accurate mapping results. Obstacle detection in ...
来源: 评论
MSFSAN: A Novel Multi-Scale Spatio-Temporal Feature Screening Attention Network for Urban Carbon Emission Prediction
MSFSAN: A Novel Multi-Scale Spatio-Temporal Feature Screenin...
收藏 引用
IEEE International Conference on Systems, Man and Cybernetics
作者: Ben Wang Xizhong Qin Jiwei Qin Xiaoyu Zhang Haodong Ma Xinjiang Key Laboratory of Signal Detection and Processing College of Computer Science and Technology Xinjiang University Ürümqi China
In order to cope with the increasingly severe global energy conservation and emission reduction problems, research on urban carbon emission prediction is of great significance. The existing methods mainly use time ser... 详细信息
来源: 评论
LE-CAM++: A Lighter and More Efficient CAM++ for Speaker Verification  14
LE-CAM++: A Lighter and More Efficient CAM++ for Speaker Ver...
收藏 引用
14th International Symposium on Chinese Spoken Language processing, ISCSLP 2024
作者: Liu, Shuanghong Song, Zhida Fang, Zhihua He, Liang School of Computer Science and Technology Xinjiang University Urumqi China School of Intelligence Science and Technology Xinjiang University Urumqi China Xinjiang Key Laboratory of Signal Detection and Processing Urumqi China Department of Electronic Engineering Beijing National Research Center for Information Science and Technology Tsinghua University Beijing China
Due to its superior performance and fewer parameters, CAM++ has become the state-of-the-art model for speaker verification tasks. This model uses 2D convolutional blocks to extract front-end features, which are then f... 详细信息
来源: 评论
Enhancing Relational Classification Model Fusing Entity and Sentence Semantic Information
Enhancing Relational Classification Model Fusing Entity and ...
收藏 引用
Pattern Recognition and Machine Learning (PRML), IEEE International Conference on
作者: Chunji Wei Xizhong Qin Taiping Yuan School of Information Science and Engineering Xinjiang University of China Xinjiang Key Laboratory of Signal Detection and Processing Urumqi China
Relationship classification aims at mining the relationship between two entities in a sentence and is an essential basis for the information extraction task. However, traditional relationship classification methods, w...
来源: 评论
MUNet++: Multilevel wavelet nested UNet++ demoiréing residual network
收藏 引用
Displays 2024年 83卷
作者: Gao, Guxue Lai, Huicheng Jia, Zhenhong The College of Computer Science and Technology Xinjiang University Urumqi830017 China Key Laboratory of Signal Detection and Processing Xinjiang University Urumqi830017 China
When mobile phones and digital cameras are used to capture information on a screen or store scenes with rich textures, an unpleasant moiré phenomenon occurs, which seriously degrades the quality of the image and ... 详细信息
来源: 评论
Joint Image Restoration For Domain Adaptive Object detection In Foggy Weather Condition
Joint Image Restoration For Domain Adaptive Object Detection...
收藏 引用
IEEE International Conference on Image processing
作者: Jing Ma Meng Lin Gang Zhou Zhenhong Jia School of Computer Science and Technology Xinjiang University Urumqi China Xinjiang Key Laboratory of Signal Detection and Processing Urumqi China
Driven by deep learning, object detection methods have made significant progress in recent years. However, there is still a domain shift between synthetic foggy data and real foggy data, this leads to a undesirable de... 详细信息
来源: 评论
Attention-based Dual-Branch Network for Micro-Expression Recognition with Global-Local Feature Fusion
Attention-based Dual-Branch Network for Micro-Expression Rec...
收藏 引用
IEEE International Joint Conference on Biometrics (IJCB)
作者: Yupeng Qi Mayire Ibrayim Askar Hamdulla School of Computer Science and Technology Xinjiang University Urumqi China Xinjiang Key Laboratory of Signal Detection and Processing Urumqi China
Micro-expression(ME) is an uncontrollable muscle movement that appears on the face when people try to hide or inhibit their real emotions, which has the problems of short duration, small movement amplitude and uneven ... 详细信息
来源: 评论
Multi-branch Network with Cross-Domain Feature Fusion for Anomalous Sound detection  1
收藏 引用
18th National Conference on Man-Machine Speech Communication, NCMMSC 2023
作者: Fang, Wenjie Fan, Xin Hu, Ying School of Computer Science and Technology Xinjiang University Urumqi China Key Laboratory of signal detection and processing in Xinjiang Urumqi China
Anomalous sound detection (ASD) is a key technology to identify abnormal sounds in various industries. Self-supervised anomalous sound detection aims at detecting unknown machine anomalous sounds by learning the chara... 详细信息
来源: 评论
WavLM and Omni-Scale CNNs: Enhancing Boundary detection in Partially Spoofed Audio
WavLM and Omni-Scale CNNs: Enhancing Boundary Detection in P...
收藏 引用
Asia-Pacific signal and Information processing Association Annual Summit and Conference (APSIPA)
作者: Menghan Li Zhihua Huang School of Computer Science and Technology Xinjiang University Urumqi China Key Laboratory of Signal Detection and Processing in Xinjiang Urumqi China
Partially spoofed/fake audio, in which segments of utterances are replaced with synthetic or natural audio clips, has emerged as a new form of deep audio forgery, posing potential severe threats to societal security. ... 详细信息
来源: 评论