咨询与建议

限定检索结果

文献类型

  • 161 篇 会议
  • 51 篇 期刊文献

馆藏范围

  • 212 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 128 篇 工学
    • 85 篇 计算机科学与技术...
    • 78 篇 软件工程
    • 55 篇 信息与通信工程
    • 25 篇 生物工程
    • 20 篇 光学工程
    • 16 篇 化学工程与技术
    • 14 篇 生物医学工程(可授...
    • 10 篇 电气工程
    • 9 篇 仪器科学与技术
    • 9 篇 电子科学与技术(可...
    • 8 篇 机械工程
    • 8 篇 控制科学与工程
    • 6 篇 安全科学与工程
    • 5 篇 材料科学与工程(可...
    • 4 篇 动力工程及工程热...
    • 4 篇 土木工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 建筑学
  • 82 篇 理学
    • 36 篇 物理学
    • 28 篇 数学
    • 27 篇 生物学
    • 18 篇 化学
    • 10 篇 统计学(可授理学、...
    • 5 篇 大气科学
  • 36 篇 管理学
    • 27 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
  • 9 篇 医学
    • 9 篇 基础医学(可授医学...
    • 9 篇 临床医学
    • 8 篇 药学(可授医学、理...
  • 4 篇 教育学
    • 4 篇 教育学
  • 1 篇 农学

主题

  • 26 篇 feature extracti...
  • 12 篇 deep learning
  • 12 篇 training
  • 11 篇 accuracy
  • 10 篇 neural networks
  • 10 篇 convolution
  • 9 篇 speech processin...
  • 9 篇 semantics
  • 6 篇 transformers
  • 6 篇 speech enhanceme...
  • 6 篇 noise
  • 6 篇 data models
  • 6 篇 adaptation model...
  • 5 篇 object detection
  • 5 篇 noise reduction
  • 5 篇 time series anal...
  • 5 篇 attention mechan...
  • 4 篇 image enhancemen...
  • 4 篇 raman spectrosco...
  • 4 篇 noise measuremen...

机构

  • 54 篇 school of comput...
  • 43 篇 xinjiang key lab...
  • 27 篇 key laboratory o...
  • 16 篇 school of inform...
  • 13 篇 department of el...
  • 10 篇 xinjiang key lab...
  • 9 篇 college of softw...
  • 9 篇 school of intell...
  • 8 篇 school of inform...
  • 8 篇 college of infor...
  • 7 篇 department of el...
  • 7 篇 key laboratory o...
  • 7 篇 key laboratory o...
  • 7 篇 china mobile res...
  • 6 篇 xinjiang key lab...
  • 6 篇 school of comput...
  • 6 篇 college of softw...
  • 5 篇 key laboratory o...
  • 5 篇 xinjiang key lab...
  • 4 篇 college of compu...

作者

  • 23 篇 jia zhenhong
  • 23 篇 hamdulla askar
  • 13 篇 shi fei
  • 12 篇 liang he
  • 12 篇 gang zhou
  • 12 篇 he liang
  • 12 篇 askar hamdulla
  • 12 篇 zhenhong jia
  • 11 篇 wang jiajia
  • 11 篇 zhou gang
  • 10 篇 lv xiaoyi
  • 10 篇 qin xizhong
  • 9 篇 ying hu
  • 9 篇 chen chen
  • 9 篇 chen cheng
  • 9 篇 zhihua huang
  • 8 篇 fei shi
  • 8 篇 huang xiaohui
  • 8 篇 qin jiwei
  • 7 篇 hu ying

语言

  • 208 篇 英文
  • 3 篇 其他
  • 2 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 意大利文
检索条件"机构=Xinjiang Signal Detection and Processing Key Laboratory"
212 条 记 录,以下是191-200 订阅
排序:
Qualitative Analysis of Vibrational Spectroscopic Based on Ensemble Convolutional Neural Networks
SSRN
收藏 引用
SSRN 2022年
作者: Sun, Penghui Wang, Jiajia Liu, Pei Dong, Zhilin School of Information Science and Engineering Xinjiang University Urumqi China The Key Laboratory of Signal Detection and Processing Xinjiang Uygur Autonomous Region Xinjiang University China Post-Doctoral Workstation Xinjiang Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute Urumqi China
Vibrational spectroscopy qualitative analysis technology has shown excellent potential in pharmaceuticals, food science, and other fields. In this paper, we proposed an ensemble convolutional neural network more suita... 详细信息
来源: 评论
Adaptive Gaussian Regularization Constrained Sparse Subspace Clustering for Image Segmentation
Adaptive Gaussian Regularization Constrained Sparse Subspace...
收藏 引用
International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Sensen Song Dayong Ren Zhenhong Jia Fei Shi School of Computer Science and Technology Xinjiang University Urumqi China Key Laboratory of Signal Detection and Processing Xinjiang Uygur Autonomous Region Urumqi China College of Mathematics and System Science Xinjiang University Urumqi China National Key Laboratory for Novel Software Technology Nanjing University Nanjing China
Sparse Subspace Clustering (SSC) is integral to image processing, drawing from spectral clustering foundations. However, prevalent methods, relying on an l 1 -norm constraint, fail to capture nuanced inter-region corr...
来源: 评论
Speaker Recognition Based on Pre-Trained Model and Deep Clustering
Speaker Recognition Based on Pre-Trained Model and Deep Clus...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Liang He Zhida Song Shuanghong Liu Mengqi Niu Ying Hu Hao Huang School of Computer Science and Technology Xinjiang University Urumqi China School of Intelligence Science and Technology Xinjiang University Urumqi China Xinjiang Key Laboratory of Signal Detection and Processing Urumqi China Department of Electronic Engineering Tsinghua University Beijing China
In this paper, we propose a novel loss by integrating a deep clustering (DC) loss at the frame-level and a speaker recognition loss at the segment-level into a single network without additional data requirements and e... 详细信息
来源: 评论
Multi-View Speaker Embedding Learning for Enhanced Stability and Discriminability
Multi-View Speaker Embedding Learning for Enhanced Stability...
收藏 引用
International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Liang He Zhihua Fang Zuoer Chen Minqiang Xu Ying Meng Penghao Wang School of Computer Science and Technology Xinjiang University Urumqi China Xinjiang Key Laboratory of Signal Detection and Processing Urumqi China Department of Electronic Engineering Tsinghua University Beijing China iFly Digital Technology Hefei China
Deep neural network models based on x-vector have become the most popular framework for speaker recognition, and the quality of speaker features (embeddings) is important for open-set tasks such as speaker verificatio...
来源: 评论
Asffuse: Infrared and Visible Image Fusion Model Based on Adaptive Selection Feature Maps
SSRN
收藏 引用
SSRN 2023年
作者: Liu, Kuizhuang Li, Min Zuo, Enguang Chen, Chen Chen, Cheng Wang, Bo Lv, Yi Xiao Wang, Yunling College of Software Xinjiang University XinJiang Urumqi830046 China College of Information Science and Engineering Xinjiang University XinJiang Urumqi830046 China Key Laboratory of Signal Detection and Processing Xinjiang University XinJiang Urumqi830046 China Department of Radiology The First Affiliated Hospital of Xinjiang Medical University XinJiang Urumqi830000 China
Scientists are constantly modifying the architecture of deep learning networks to achieve better fusion results, but few people pay attention to the impact of noise feature maps generated in the convolution process on... 详细信息
来源: 评论
SMMA-Net: An Audio Clue-Based Target Speaker Extraction Network with Spectrogram Matching and Mutual Attention
SMMA-Net: An Audio Clue-Based Target Speaker Extraction Netw...
收藏 引用
International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Ying Hu Haitao Xu Zhongcun Guo Hao Huang Liang He Key Laboratory of Signal Detection and Processing Xinjiang Urumqi China School of Computer Science and Technology Xinjiang University Urumqi China HiSilicon Technologies Co. Limited Department of Electronic Engineering Tsinghua University Beijing China
We propose a deep neural network with spectrogram matching and mutual attention (SMMA-Net) for audio clue-based target speaker extraction (TSE). To effectively use the auxiliary speech, we proposed spectrogram matchin...
来源: 评论
Sle Diagnosis Research Based on Sers Combined with a Multi-Modal Fusion Method
SSRN
收藏 引用
SSRN 2023年
作者: Huang, Yuhao Chen, Chen Chang, Chenjie Cheng, Zhiyuan Liu, Yang Chen, Cheng Lv, Xiaoyi College of Software Xinjiang University Xinjiang Urumqi830046 China College of Information Science and Engineering Xinjiang University Urumqi830046 China Key Laboratory of Signal Detection and Processing Xinjiang University Urumqi830046 China Xinjiang Cloud Computing Application Laboratory Xinjiang Cloud Computing Engineering Technology Research Center Karamay834000 China
As artificial intelligence technology gains widespread adoption in biomedicine, the exploration of integrating biofluidic Raman spectroscopy for enhanced disease diagnosis opens up new prospects for the practical appl... 详细信息
来源: 评论
HIGF-Net: Hierarchical information-guided fusion network for polyp segmentation based on transformer and convolution feature learning
收藏 引用
Computers in Biology and Medicine 2023年 第1期161卷 107038-107038页
作者: Wang, Junwen Tian, Shengwei Yu, Long Zhou, Zhicheng Wang, Fan Wang, Yongtao College of Software Xinjiang University Urumqi830000 China Key Laboratory of Software Engineering Technology Xinjiang University Urumqi830000 China College of Network Center Xinjiang University Urumqi830000 China Signal and Signal Processing Laboratory College of Information Science and Engineering Xinjiang University Urumqi830000 China
Polyp segmentation plays a role in image analysis during colonoscopy screening, thus improving the diagnostic efficiency of early colorectal cancer. However, due to the variable shape and size characteristics of polyp... 详细信息
来源: 评论
Sle Diagnosis Research Based on Sers Combined with a Multi-Modal Fusion Method
SSRN
收藏 引用
SSRN 2023年
作者: Huang, Yuhao Chen, Chen Chang, Chenjie Cheng, Zhiyuan Liu, Yang Chen, Cheng Lv, Xiaoyi College of Software Xinjiang University Xinjiang Urumqi830046 China College of Information Science and Engineering Xinjiang University Urumqi830046 China Key Laboratory of Signal Detection and Processing Xinjiang University Urumqi830046 China Xinjiang Cloud Computing Application Laboratory Xinjiang Cloud Computing Engineering Technology Research Center Karamay834000 China
As artificial intelligence technology gains widespread adoption in biomedicine, the exploration of integrating biofluidic Raman spectroscopy for enhanced disease diagnosis opens up new prospects for the practical appl... 详细信息
来源: 评论
LE-CAM++: A Lighter and More Efficient CAM++ for Speaker Verification
LE-CAM++: A Lighter and More Efficient CAM++ for Speaker Ver...
收藏 引用
International Symposium on Chinese Spoken Language processing
作者: Shuanghong Liu Zhida Song Zhihua Fang Liang He School of Computer Science and Technology Xinjiang University Urumqi Xinjiang Key Laboratory of Signal Detection and Processing Urumqi School of Intelligence Science and Technology Xinjiang University Urumqi Department of Electronic Engineering and Beijing National Research Center for Information Science and Technology Tsinghua University Beijing
Due to its superior performance and fewer parameters, CAM++ has become the state-of-the-art model for speaker verification tasks. This model uses 2D convolutional blocks to extract front-end features, which are then f... 详细信息
来源: 评论