咨询与建议

限定检索结果

文献类型

  • 64 篇 会议
  • 22 篇 期刊文献

馆藏范围

  • 86 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 52 篇 工学
    • 33 篇 计算机科学与技术...
    • 29 篇 软件工程
    • 13 篇 机械工程
    • 9 篇 光学工程
    • 3 篇 控制科学与工程
    • 3 篇 航空宇航科学与技...
    • 3 篇 生物工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 测绘科学与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 电气工程
    • 1 篇 信息与通信工程
  • 20 篇 理学
    • 10 篇 数学
    • 9 篇 物理学
    • 3 篇 生物学
    • 2 篇 大气科学
    • 2 篇 统计学(可授理学、...
    • 1 篇 地质学
    • 1 篇 系统科学
  • 8 篇 管理学
    • 7 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 药学(可授医学、理...

主题

  • 11 篇 three-dimensiona...
  • 10 篇 virtual reality
  • 6 篇 conferences
  • 6 篇 semantics
  • 5 篇 image annotation
  • 5 篇 visualization
  • 5 篇 image reconstruc...
  • 5 篇 solid modeling
  • 5 篇 user interfaces
  • 3 篇 mixed reality
  • 3 篇 immersive experi...
  • 3 篇 semantic segment...
  • 3 篇 optical flow
  • 3 篇 cameras
  • 3 篇 face
  • 3 篇 feature extracti...
  • 3 篇 head-mounted dis...
  • 3 篇 complexity theor...
  • 3 篇 shape
  • 2 篇 pixel

机构

  • 55 篇 state key labora...
  • 18 篇 school of new me...
  • 9 篇 school of comput...
  • 4 篇 yunnan innovatio...
  • 4 篇 beihang universi...
  • 4 篇 state key labora...
  • 4 篇 shanghai artific...
  • 3 篇 state key labora...
  • 3 篇 collaborative in...
  • 3 篇 shen yuan honors...
  • 3 篇 state key labora...
  • 3 篇 the shanghai art...
  • 3 篇 the department o...
  • 2 篇 the image proces...
  • 2 篇 peng cheng lab
  • 2 篇 school of comput...
  • 2 篇 sensetime resear...
  • 2 篇 hewlett packard ...
  • 2 篇 state key labora...
  • 2 篇 institute of aut...

作者

  • 28 篇 xukun shen
  • 23 篇 shen xukun
  • 12 篇 yong hu
  • 8 篇 hu yong
  • 6 篇 tian feng
  • 5 篇 yang shen
  • 5 篇 liu chenyang
  • 5 篇 feng tian
  • 5 篇 zou zhengxia
  • 5 篇 qi yue
  • 5 篇 shi zhenwei
  • 4 篇 shen yang
  • 4 篇 shuo yan
  • 3 篇 hou fei
  • 3 篇 chen keyan
  • 3 篇 shen xu-kun
  • 2 篇 zhao rui
  • 2 篇 xuanmiao zhang
  • 2 篇 fei hou
  • 2 篇 jieshi shen

语言

  • 79 篇 英文
  • 5 篇 其他
  • 2 篇 中文
检索条件"机构=Xukun Shen is with State Key Laboratory of Virtual Reality Technology and Systems"
86 条 记 录,以下是11-20 订阅
排序:
Particle-based simulation of fluid-solid coupling
Particle-based simulation of fluid-solid coupling
收藏 引用
13th International Conference on systems Simulation, AsiaSim 2013
作者: Yin, Xinyi shen, xukun Zhang, Fengquan Huang, Guanzhe State Key Laboratory of Virtual Reality Technology and Systems Beihang University China
We present an efficient framework for fluid-solid coupling, including both rigid and elastic bodies. Based on a unified particle model, we apply different coupling scheme for fluid-solid and solid-solid coupling respe... 详细信息
来源: 评论
Robust wrinkle-aware non-rigid registration for triangle meshes of hand with rich and dynamic details
Robust wrinkle-aware non-rigid registration for triangle mes...
收藏 引用
作者: Zhao, Ling shen, xukun Long, Xiang State Key Laboratory of Virtual Reality Technology and Systems Beihang University China
Consistence of topology for 3D models with such rich details as pores and wrinkles is very important for performing higher level tasks like deformation and animation. In this paper, we propose a novel wrinkle-aware re... 详细信息
来源: 评论
Real-time particle fluid simulation with WCSPH  20
Real-time particle fluid simulation with WCSPH
收藏 引用
20th Pacific Conference on Computer Graphics and Applications, PG 2012
作者: Zhang, Fengquan shen, xukun Long, Xiang Zhao, Bin Hu, Lei State Key Laboratory of Virtual Reality Technology and Systems Beihang University China
In this paper, based on weakly compressible smoothed particles hydrodynamics (WCSPH), we present a method for simulating high quality fluid. We propose a new pressure equation to reduce time overhead, speed up converg... 详细信息
来源: 评论
Adaptive SIFT matching using cascading vocabulary tree
Adaptive SIFT matching using cascading vocabulary tree
收藏 引用
2011 International Conference on virtual reality and Visualization, ICVRV 2011
作者: ZhiQiang, Fan xukun, shen State Key Laboratory of Virtual Reality Technology and Systems Beihang University Beijing China
We present a novel vocabulary tree data structure for adaptive SIFT matching. Our matching process contains an offline module to cluster features from a group of reference images and an online module to match them to ... 详细信息
来源: 评论
Structure-based mesh completion
Structure-based mesh completion
收藏 引用
2009 International Conference on Computational Intelligence and Software Engineering, CiSE 2009
作者: Zhang, Dehui Qi, Yue Yang, shen Hou, Fei State Key Laboratory of Virtual Reality Technology and Systems Beihang University Beijing 100191 China
Meshes acquired with range scanning devices typically contain complex holes missing salient structure features. This paper presents a novel method to complete meshes by means of structure propagation. In our system, f... 详细信息
来源: 评论
An automatic registration method based on fiducial marker for image guided neurosurgery system
An automatic registration method based on fiducial marker fo...
收藏 引用
13th International Conference on systems Simulation, AsiaSim 2013
作者: Yin, Minjie shen, xukun Hu, Yong Fang, Xiaorui State Key Laboratory of Virtual Reality Technology and Systems Beihang University Beijing 100191 China
Patient-to-image registration is a fundamental step of Image Guided Neurosurgery System. In this paper, we propose an automatic technique to register the patient space with the preoperative images based on fiducial ma... 详细信息
来源: 评论
A method of 3D modeling and codec
收藏 引用
Science in China(Series F) 2009年 第5期52卷 758-769页
作者: QI Yue YANG shen CAI Su HOU Fei shen xukun ZHAO QinPing State Key Laboratory of Virtual Reality Technology and Systems Beihang University Beijing 100191 China Institute of Modern Educational Technology Beijing Normal University Beijing 100875 China
3D modeling and codec of real objects are hot issues in the field of virtual reality. In this paper, we propose an automatic registration two range images method and a cycle based automatic global registration algorit... 详细信息
来源: 评论
Saliency-driven depth compression for 3D image warping  22
Saliency-driven depth compression for 3D image warping
收藏 引用
22nd Pacific Conference on Computer Graphics and Applications, PG 2014
作者: Gu, Minjie Hu, Shanfeng Wang, Xiaochuan Liang, Xiaohui shen, xukun Qin, Aihong State Key Laboratory of Virtual Reality Technology and Systems Beihang University Beijing China Zhejiang Institute of Media and Communications Hangzhou China
Current compression methods compress depth images by incorporating 2D features, which leads to a loss of the detail of the original 3D object in the recovered depth image. The main idea of this paper is to augment 2D ... 详细信息
来源: 评论
GRANet: Global refinement atrous convolutional neural network for semantic scene segmentation  25
GRANet: Global refinement atrous convolutional neural networ...
收藏 引用
25th IEEE International Conference on Image Processing, ICIP 2018
作者: Feng, Zhou Yong, Hu xukun, shen State Key Laboratory of Virtual Reality Technology and Systems Beihang University China School of New Media Art and Design Beihang University China
The main problems of complex-scene understanding and semantic scene segmentation are caused by mismatched relationships, confusion categories, and inconspicuous classes. Towards above issues, we propose a global refin... 详细信息
来源: 评论
3D model multiple semantic automatic annotation for small scale labeled data set
3D model multiple semantic automatic annotation for small sc...
收藏 引用
2011 International Conference on virtual reality and Visualization, ICVRV 2011
作者: Tian, Feng shen, Xu-Kun Xian-Mei, Liu Hong-Tao, Xie State Key Laboratory of Virtual Reality Technology and Systems BeiHang University Beijing China School of Computer and Information Technology Northeast Petroleum University DaQing China
Automatically assigning keywords to 3D models is of great interest as it allows one to retrieve, index, organize and understand large collections of 3D models. Most Methods require high sample size for training, so th... 详细信息
来源: 评论