咨询与建议

限定检索结果

文献类型

  • 384 篇 期刊文献
  • 355 篇 会议

馆藏范围

  • 739 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 494 篇 工学
    • 349 篇 计算机科学与技术...
    • 293 篇 软件工程
    • 104 篇 信息与通信工程
    • 80 篇 电气工程
    • 78 篇 控制科学与工程
    • 64 篇 生物工程
    • 46 篇 光学工程
    • 46 篇 生物医学工程(可授...
    • 39 篇 电子科学与技术(可...
    • 30 篇 机械工程
    • 26 篇 化学工程与技术
    • 25 篇 仪器科学与技术
    • 21 篇 网络空间安全
    • 19 篇 动力工程及工程热...
    • 16 篇 力学(可授工学、理...
  • 270 篇 理学
    • 150 篇 数学
    • 71 篇 生物学
    • 70 篇 物理学
    • 52 篇 统计学(可授理学、...
    • 25 篇 化学
    • 20 篇 系统科学
    • 14 篇 地球物理学
  • 171 篇 管理学
    • 98 篇 管理科学与工程(可...
    • 83 篇 图书情报与档案管...
    • 31 篇 工商管理
  • 44 篇 医学
    • 36 篇 临床医学
    • 29 篇 基础医学(可授医学...
    • 18 篇 药学(可授医学、理...
  • 23 篇 法学
    • 17 篇 社会学
  • 16 篇 经济学
    • 15 篇 应用经济学
  • 5 篇 教育学
  • 4 篇 农学
  • 2 篇 艺术学
  • 1 篇 文学

主题

  • 29 篇 deep learning
  • 28 篇 feature extracti...
  • 27 篇 predictive model...
  • 26 篇 training
  • 23 篇 semantics
  • 20 篇 data models
  • 18 篇 computational mo...
  • 15 篇 contrastive lear...
  • 14 篇 convolution
  • 13 篇 machine learning
  • 13 篇 accuracy
  • 12 篇 graph neural net...
  • 11 篇 collaboration
  • 10 篇 anomaly detectio...
  • 10 篇 analytical model...
  • 10 篇 forecasting
  • 10 篇 convolutional ne...
  • 9 篇 task analysis
  • 9 篇 convergence
  • 9 篇 prediction algor...

机构

  • 34 篇 chongqing key la...
  • 32 篇 key laboratory o...
  • 32 篇 national enginee...
  • 24 篇 college of compu...
  • 23 篇 zhejiang univers...
  • 23 篇 school of comput...
  • 21 篇 zhejiang key lab...
  • 21 篇 university of ch...
  • 21 篇 key laboratory o...
  • 20 篇 fujian key labor...
  • 20 篇 engineering rese...
  • 18 篇 college of compu...
  • 18 篇 xi'an key labora...
  • 18 篇 shaanxi key labo...
  • 16 篇 guangdong provin...
  • 15 篇 peng cheng labor...
  • 15 篇 alibaba group
  • 14 篇 school of comput...
  • 14 篇 shenzhen institu...
  • 14 篇 school of cyber ...

作者

  • 25 篇 wang guoyin
  • 21 篇 huang qingming
  • 20 篇 shen linlin
  • 19 篇 xu qianqian
  • 16 篇 chen huajun
  • 15 篇 chen gang
  • 14 篇 yang zhiyong
  • 13 篇 chen yanping
  • 13 篇 wang lihui
  • 12 篇 shang mingsheng
  • 12 篇 zhang ningyu
  • 11 篇 xia shuyin
  • 11 篇 xin luo
  • 11 篇 wang zhongmin
  • 10 篇 cao xiaochun
  • 9 篇 jian-tao zhou
  • 9 篇 shi xiaoyu
  • 9 篇 mingsheng shang
  • 9 篇 huang fei
  • 9 篇 penghua li

语言

  • 667 篇 英文
  • 61 篇 其他
  • 24 篇 中文
检索条件"机构=Zhejiang Key Laboratory of Big Data Intelligent Computing"
739 条 记 录,以下是11-20 订阅
排序:
GoPIM: GCN-Oriented Pipeline Optimization for PIM Accelerators  31
GoPIM: GCN-Oriented Pipeline Optimization for PIM Accelerato...
收藏 引用
31st IEEE International Symposium on High Performance Computer Architecture, HPCA 2025
作者: Yang, Siling He, Shuibing Wang, Wenjiong Yin, Yanlong Wu, Tong Chen, Weijian Zhang, Xuechen Sun, Xian-He Feng, Dan The State Key Laboratory of Blockchain and Data Security Zhejiang University China Zhejiang Lab China Institute of Blockchain and Data Security China Zhejiang Key Laboratory of Big Data Intelligent Computing China Washington State University Vancouver United States Illinois Institute of Technology United States Huazhong University of Science and Technology China Wuhan National Laboratory for Optoelectronics China
Graph convolutional networks (GCNs) are popular for a variety of graph learning tasks. ReRAM-based processing-in-memory (PIM) accelerators are promising to expedite GCN training owing to their in-situ computing capabi... 详细信息
来源: 评论
A numerical magnitude aware multi-channel hierarchical encoding network for math word problem solving
收藏 引用
Neural computing and Applications 2025年 第3期37卷 1651-1672页
作者: Xu, Junjie Chen, Yuzhong Xiao, Lingsheng Liao, Hongmiao Zhong, Jiayuan Dong, Chen College of Computer and Data Science Fuzhou University Fujian Province Fuzhou350108 China Engineering Research Center of Big Data Intelligence Ministry of Education Fuzhou China Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fujian Province Fuzhou350108 China
Math word problem (MWP) represents a critical research area within reading comprehension, where accurate comprehension of math problem text is crucial for generating math expressions. However, current approaches still... 详细信息
来源: 评论
SynWorld: Virtual Scenario Synthesis for Agentic Action Knowledge Refinement
arXiv
收藏 引用
arXiv 2025年
作者: Fang, Runnan Wang, Xiaobin Liang, Yuan Qiao, Shuofei Wu, Jialong Xi, Zekun Zhang, Ningyu Jiang, Yong Xie, Pengjun Huang, Fei Chen, Huajun Zhejiang University China Alibaba Group China Zhejiang Key Laboratory of Big Data Intelligent Computing China
In the interaction between agents and their environments, agents expand their capabilities by planning and executing actions. However, LLM-based agents face substantial challenges when deployed in novel environments o... 详细信息
来源: 评论
An Evolutionary Multitasking Algorithm for Efficient Multiobjective Recommendations
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2025年 第3期6卷 518-532页
作者: Tian, Ye Ji, Luke Hu, Yiwei Ma, Haiping Wu, Le Zhang, Xingyi Anhui University Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and Technology Hefei230601 China Anhui University Institutes of Physical Science and Information Technology Hefei230601 China Hefei University of Technology Key Laboratory of Knowledge Engineering with Big Data Hefei230029 China
Represented by evolutionary algorithms and swarm intelligence algorithms, nature-inspired metaheuristics have been successfully applied to recommender systems and amply demonstrated effectiveness, in particular, for m... 详细信息
来源: 评论
Edge-Cloud Cooperation-Driven intelligent Sustainability Evaluation Strategy Based on IoT and CPS for Energy-Intensive Manufacturing Industries
收藏 引用
IEEE Internet of Things Journal 2025年 第9期12卷 12287-12297页
作者: Ma, Shuaiyin Huang, Yuming Chen, Yanping Xiao, Qinge Xu, Jun Leng, Jiewu Xi’an University of Posts and Telecommunications Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing Xi’an Key Laboratory of Big Data and Intelligent Computing School of Computer Science and Technology Xi’an710121 China Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China Xidian University Advanced Manufacturing Technology Innovation Center Guangzhou Institute of Technology Guangzhou510555 China Guangdong University of Technology Guangdong Provincial Key Laboratory of Computer Integrated Manufacturing System State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment Guangzhou510006 China
The advancement of the Industry 5.0 in information technology has led to increased interest in integrating edge-cloud cooperation with Internet of Things (IoT) and cyber-physical system (CPS) designs. This integration... 详细信息
来源: 评论
Surface-Continuous Scene Representation for Light Field Depth Estimation via Planarity Prior
收藏 引用
IEEE Transactions on Circuits and Systems for Video Technology 2025年 第5期35卷 5051-5066页
作者: Chen, Rongshan Sheng, Hao Yang, Da Cui, Zhenglong Cong, Ruixuan Beihang University State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beijing100191 China Beihang University Key Laboratory of Data Science and Intelligent Computing Hangzhou International Innovation Institute Zhejiang Hangzhou311115 China Macao Polytechnic University Faculty of Applied Sciences China
Light field (LF) imaging captures both spatial and angular information of the real world, enabling precise depth estimation. However, images are merely discrete expressions of scenes. Limited by imaging technology, LF... 详细信息
来源: 评论
OmniThink: Expanding Knowledge Boundaries in Machine Writing through Thinking
arXiv
收藏 引用
arXiv 2025年
作者: Xi, Zekun Yin, Wenbiao Fang, Jizhan Wu, Jialong Fang, Runnan Zhang, Ningyu Jiang, Yong Xie, Pengjun Huang, Fei Chen, Huajun Zhejiang University China Tongyi Lab Alibaba Group China Zhejiang Key Laboratory of Big Data Intelligent Computing China
Machine writing with large language models often relies on retrieval-augmented generation. However, these approaches remain confined within the boundaries of the model’s predefined scope, limiting the generation of c... 详细信息
来源: 评论
IMPRESS: an importance-informed multi-tier prefix KV storage system for large language model inference  25
IMPRESS: an importance-informed multi-tier prefix KV storage...
收藏 引用
Proceedings of the 23rd USENIX Conference on File and Storage Technologies
作者: Weijian Chen Shuibing He Haoyang Qu Ruidong Zhang Siling Yang Ping Chen Yi Zheng Baoxing Huai Gang Chen The State Key Laboratory of Blockchain and Data Security Zhejiang University and Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security and Zhejiang Key Laboratory of Big Data Intelligent Computing The State Key Laboratory of Blockchain and Data Security Zhejiang University Huawei Cloud
Modern advanced large language model (LLM) applications often prepend long contexts before user queries to improve model output quality. These contexts frequently repeat, either partially or fully, across multiple que...
来源: 评论
Numerical study of microorganisms swimming near a convex wall in a Giesekus fluid
收藏 引用
Physical Review E 2025年 第1期111卷 015103-015103页
作者: Chenlin Zhu Fangyuan Peng Dingyi Pan Zhaosheng Yu Zhaowu Lin Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province China Jiliang University Hangzhou 310018 China
The motion of microorganisms in complex fluids stands out as a prominent subject within fluid mechanics. In our study, we utilize the fictitious domain method to investigate the locomotion of squirmers along a convex ... 详细信息
来源: 评论
LeapGNN: accelerating distributed GNN training leveraging feature-centric model migration  25
LeapGNN: accelerating distributed GNN training leveraging fe...
收藏 引用
Proceedings of the 23rd USENIX Conference on File and Storage Technologies
作者: Weijian Chen Shuibing He Haoyang Qu Xuechen Zhang The State Key Laboratory of Blockchain and Data Security Zhejiang University and Zhejiang Lab and Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security and Zhejiang Key Laboratory of Big Data Intelligent Computing Washington State University Vancouver
Distributed training of graph neural networks (GNNs) has become a crucial technique for processing large graphs. Prevalent GNN frameworks are model-centric, necessitating the transfer of massive graph vertex features ...
来源: 评论