As an important performance diagnosis tool, in-situ measurement of current distribution in PEM fuel cells is helpful for better understanding of internal transport phenomena and optimization of fuel cell structures an...
详细信息
As an important performance diagnosis tool, in-situ measurement of current distribution in PEM fuel cells is helpful for better understanding of internal transport phenomena and optimization of fuel cell structures and operating parameters. With a specially developed current distribution measurement gasket, the effects of reactant gas flow rates on the current distribution in a PEM fuel cell with single serpentine flowfield were investigated. Experimental results show that insufficient hydrogen or air leads to decreased current density along the gas flow direction. Higher reactant gas flow rate favors not only the local performance but also the homogeneity of current distribution. But current distribution almost ceases to change with further increase of hydrogen flow rate when it reaches certain value.
The velocities of liquid slugs in continuous slug flow were studied experimentally in a 133 m long horizontal pipeline. Measurements were performed by cross-correlating the signals of two pairs of probes installed alo...
详细信息
The velocities of liquid slugs in continuous slug flow were studied experimentally in a 133 m long horizontal pipeline. Measurements were performed by cross-correlating the signals of two pairs of probes installed along the pipeline. Correlations of liquid slug velocities with the mixed velocities are presented. It is found that the correlations depend on Froude numbers. At low Froude numbers, the correlation from the measurements of the upstream probes is consistent with that from the measurements of the downstream probes and both correlations agree well with the results of other researchers. But there is difference between the correlation of the upstream probes and that of the downstream probes at high Froude numbers. Compared with the experimental data of other researchers, it is expected that the velocities of liquid slugs are affected by the void fraction in liquid slugs and the evolution of the lengths of liquid slugs and elongated bubbles along pipeline. However, the wake effect may have no influence on the liquid slug velocities.
Cadmium sulfide photocatalyst was prepared by hydrothermal methods with one-step and two-step methods, respectively. Platinum was loaded on the surface of prepared photocatalysts and its optimal loading amount was exa...
详细信息
Cadmium sulfide photocatalyst was prepared by hydrothermal methods with one-step and two-step methods, respectively. Platinum was loaded on the surface of prepared photocatalysts and its optimal loading amount was examined. All the prepared photocatalysts were characterized by XRD, UV-Vis, XRF, SEM and TEM and their pohtocatalytic activity was evaluated by H2 evolution from water under visible light. It was found that the photocatalyst prepared by two-step showed markedly improved hydrogen production activity.
Numerical research was carried out on the convection heat transfer characteristics in bilaterally heated annular channel with narrow gap under the conditions of fully developed flow, where the inner and outer walls ar...
详细信息
Numerical research was carried out on the convection heat transfer characteristics in bilaterally heated annular channel with narrow gap under the conditions of fully developed flow, where the inner and outer walls are heated by uniform but unequal heat fluxes. Calculation results show that the ratio of the inner wall heat flux to the outer wall heat flux has great effects on the heat transfer characteristics in bilaterally heated narrow annuli. With the increase of the inner wall heated flux, the heat transfer coefficient at the outer wall of the inner tube will decrease, while the heat transfer coefficient at the inner wall of outer tube will increase. These numerical results are in good agreement with some experimental results in open literatures. Numerical results also show that the decrease of the annuli gap will yield heat transfer deterioration during flowing in narrow annular channels.
Experiments were carried out to measure the wall shear stress (WSS) of air-water bubbly flow in a horizontal tube with 35mm I.D. with TSI-1268w hot-film probes, and the circumferential distributions of the WSS in deve...
详细信息
Experiments were carried out to measure the wall shear stress (WSS) of air-water bubbly flow in a horizontal tube with 35mm I.D. with TSI-1268w hot-film probes, and the circumferential distributions of the WSS in developed regions were obtained. The measurement shows that the addition of gas into the flows increases the WSS at the bottom wall, while decreases the WSS at top wall where the bubble population is high. With an increase of gas flow rate the amount of WSS decrease at the top wall is small, while the increase of WSS at the middle and bottom wall is apparent.
A transient one-dimensional two-fluid model is proposed to investigate numerically the interfacial instability and the onset of slugging for liquid-gas flow in a horizontal duct. In the present model, the effects of s...
详细信息
A transient one-dimensional two-fluid model is proposed to investigate numerically the interfacial instability and the onset of slugging for liquid-gas flow in a horizontal duct. In the present model, the effects of surface tension and transverse variations in dynamic pressure are taken into account. The evolution of interfacial disturbances is displayed and compared with the linear viscous Kelvin-Helmholtz stability analyses. It shows that interfacial wave is more instable due to the non-linear effect. The model predicts well the stability limit of stratified flow in comparison with the experimental data, and also automatically tracks the onset of slugging. The results show that the initiation of hydrodynamic slugging is related to local interfacial instability. Based on the cycle of slugging, a model for slug frequency is presented, which predicts the trends of slug frequencies with gas/liquid flow rate well in comparison with the available data. The effects of physical properties on slugging have been examined. It is found that with the increase in the gas viscosity and liquid density the slugging would be inhibited, whereas, with the increase in liquid viscosity and gas density, the slugging can be promoted.
A thermal boundary condition for a double-population thermal lattice Boltzmann equation (TLBE) is introduced and numerically demonstrated. The unknown distribution population at the boundary node is decomposed into it...
详细信息
A thermal boundary condition for a double-population thermal lattice Boltzmann equation (TLBE) is introduced and numerically demonstrated. The unknown distribution population at the boundary node is decomposed into its equilibrium part and nonequilibrium parts, and then the nonequilibrium part is approximated with a first-order extrapolation of the nonequilibrium part of the populations at the neighboring fluid nodes. Numerical tests with Dirichlet and Neumann boundary constraints show that the numerical results of the TLBE together with the present boundary schemes agree well with the analytical solutions and those of the finite-volume method.
A lattice Boltzmann method is developed for gaseous slip flow at the pore scale in microscale porous geometries. flow characteristics through various porous structures are studied for different Knudsen numbers and inl...
详细信息
A lattice Boltzmann method is developed for gaseous slip flow at the pore scale in microscale porous geometries. flow characteristics through various porous structures are studied for different Knudsen numbers and inlet to outlet pressure ratios. It is found that the gas permeability is larger than the absolute permeability of porous media due to the gas slippage effect. Furthermore, the rarefaction influence on the gas permeability is more evident for porous structures with low porosity. The Klinkenberg equation is confirmed for the simulated porous structures. However, the second-order term of the Knudsen number (Kn2) cannot be neglected for gaseous flow with relatively high Knudsen numbers. A model for predicting the pressure drop of the flow through microscale porous media is presented based on the Ergun equation and the Carman-Kozeny equation by taking into account the effects of gas rarefaction and compressibility.
The system of ice-making by spraying water in winter and utilizing the ice in summer is pollution-free and economizes the first investment, operating cost, and reduces the peak of electric power in summer. Through est...
详细信息
The system of ice-making by spraying water in winter and utilizing the ice in summer is pollution-free and economizes the first investment, operating cost, and reduces the peak of electric power in summer. Through establishing the energy equilibrium equation of sprayed water drop, the relation between the diameter of water droplet and the time of icing at different ambient temperature and coefficient of performance of the system of ice-making by spraying water has been obtained. The errors between the numerical solution and the experimental data lie in a range of 7% to 10%, indicating that the model is reasonable. The method of the ice making is promising in the exercisable region to substitute the mechanical refrigeration system.
Prediction of dryout point is experimentally investigated with deionized water upflowing through narrow annular channel with 1.0 mm and 1.5 mm gap respectively. The annulus with narrow gap is bilaterally heated by AC ...
详细信息
Prediction of dryout point is experimentally investigated with deionized water upflowing through narrow annular channel with 1.0 mm and 1.5 mm gap respectively. The annulus with narrow gap is bilaterally heated by AC current power supply. The experimental conditions covered a range of pressure from 0.8 to 3.5 MPa, mass flux of 26.6 to 68.8 kg·m-2·s-1 and wall heat flux of 5 to 50 kW·m-2. The location of dryout is obtained by observing a sudden rise in surface temperature. Kutateladze correlation is cited and modified to predict the location of dryout and proved to be not a proper one. Considering in detail the effects of geometry of annuli, pressure, mass flux and heat flux on dryout, an empirical correction is finally developed to predict dryout point in narrow annular gap under low flow condition, which has a good agreement with experimental data.
暂无评论