Compositional lipid domains (“lipid rafts”) in plasma membranes are believed to be important components of many cellular processes. The mechanisms by which cells regulate the sizes and lifetimes of these spatially e...
详细信息
Compositional lipid domains (“lipid rafts”) in plasma membranes are believed to be important components of many cellular processes. The mechanisms by which cells regulate the sizes and lifetimes of these spatially extended domains are poorly understood at the moment. Here we show that the competition between phase separation in an immiscible lipid system and active cellular lipid transport processes naturally leads to the formation of such domains. Furthermore, we demonstrate that local interactions with immobile membrane proteins can spatially localize the rafts and lead to further clustering.
Compositional lipid domains (lipid rafts) in plasma membranes are believed to be important components of many cellular processes. The mechanisms by which cells regulate the sizes, lifetimes, and spatial localization o...
详细信息
Compositional lipid domains (lipid rafts) in plasma membranes are believed to be important components of many cellular processes. The mechanisms by which cells regulate the sizes, lifetimes, and spatial localization of these domains are rather poorly understood at the moment. We propose a robust mechanism for the formation of finite-sized lipid raft domains in plasma membranes, the competition between phase separation in an immiscible lipid system and active cellular lipid transport processes naturally leads to the formation of such domains. Simulations of a continuum model reveal that the raft size distribution is broad and the average raft size is strongly dependent on the rates of cellular and interlayer lipid transport processes. We demonstrate that spatiotemporal variations in the recycling may enable the cell to localize larger raft aggregates at specific parts along the membrane. Moreover, we show that membrane compartmentalization may further facilitate spatial localization of the raft domains. Finally, we demonstrate that local interactions with immobile membrane proteins can spatially localize the rafts and lead to further clustering.
In this paper we present a comprehensive analysis of line tension-driven compositional interface fluctuations in planar lipid bilayer membranes. Our starting point is the advective Cahn-Hilliard equation for the local...
详细信息
In this paper we present a comprehensive analysis of line tension-driven compositional interface fluctuations in planar lipid bilayer membranes. Our starting point is the advective Cahn-Hilliard equation for the local lipid composition in symmetric membranes, which explicitly incorporates both advective and diffusive lipid transport processes, and which is coupled to the continuum hydrodynamic equations governing the flow behavior of the membrane and surrounding solvent with finite subphase thickness. In order to extract the interface dynamics from the continuum phase-field formalism, we first derive the appropriate sharp-interface limit equations. We then carry out a linear perturbation analysis for the relaxational dynamics of small-amplitude sinusoidal interface fluctuations to yield the general dispersion relation ωk as a function of perturbation wave number k. The resulting expression incorporates the effects of diffusive and advective lipid transport processes within the membrane, viscous or viscoelastic membrane properties, coupling between membrane and solvent, and inertial effects within the membrane and solvent. It is shown that previously considered scenarios naturally emerge as limiting cases of the general result. Furthermore, we discuss two additional scenarios amenable to analysis, one in which the inertia of the solvent is relevant, and another one in which the membrane displays significant viscoelastic properties. Finally, we numerically evaluate the general dispersion relation for three representative model membrane systems.
Due to a thermodynamic coupling between the two leaflets comprising a lipid bilayer, compositional lipid domains residing within opposing leaflets are often found in registry. If the system is perturbed by displacing ...
详细信息
Due to a thermodynamic coupling between the two leaflets comprising a lipid bilayer, compositional lipid domains residing within opposing leaflets are often found in registry. If the system is perturbed by displacing one domain relative to the other, diffusive and advective lipid fluxes are established to restore equilibrium and reestablish domain overlap. In this work, we focus on the advective part of the process, and first derive an analytical expression for the hydrodynamic drag coefficient associated with the advective flow for the special case of perfect domain overlap. The resulting expression identifies parameter regions where sliding friction between the leaflets dominates over viscous dissipation within the leaflets or vice versa. It is shown that in all practically relevant cases, sliding friction between the leaflets is the dominant factor. Finally, we investigate the domain separation dependence of the hydrodynamic drag coefficient via direct simulations of a continuum diffuse interface model, and provide useful empirical expressions for its behavior.
Compositional lipid microdomains (“lipid rafts”) in mammalian plasma membranes are believed to facilitate many important cellular processes. While several physically distinct scenarios predicting the presence of fin...
详细信息
Compositional lipid microdomains (“lipid rafts”) in mammalian plasma membranes are believed to facilitate many important cellular processes. While several physically distinct scenarios predicting the presence of finite-sized microdomains in vivo have been proposed in the past, direct experimental verification or falsification of model predictions has remained elusive. Herein, we demonstrate that the combination of the spatial correlation and temporal fluctuation spectra of the lipid domains can be employed to unambiguously differentiate between the existing theoretical scenarios. Furthermore, the differentiation of the raft formation mechanisms using this methodology can be achieved by collecting data at physiologically relevant conditions without the need to tune control parameters.
The formation and dynamics of spatially extended compositional domains in multicomponent lipid membranes both in vivo and in vitro lie at the heart of many important biological and biophysical phenomena. While the the...
详细信息
The formation and dynamics of spatially extended compositional domains in multicomponent lipid membranes both in vivo and in vitro lie at the heart of many important biological and biophysical phenomena. While the thermodynamic basis for domain formation has been explored extensively in the past, the roles of membrane and exterior fluid hydrodynamics on domain formation kinetics have received less attention. A case in point is the impact of hydrodynamics on the dynamics of compositional heterogeneities in lipid membranes in the vicinity of a critical point. In this Rapid Communication it is argued that the asymptotic dynamic behavior of a lipid membrane system in the vicinity of a critical point is strongly influenced by hydrodynamic interactions. More specifically, a mode-coupling argument is developed which predicts a scaling behavior of lipid transport coefficients near the critical point for both symmetric and asymmetric bilayers immersed in a bulk fluid.
We consider the propagation of two-photon light in a random medium. We show that the Wigner transform of the two-photon amplitude obeys an equation that is analogous to the radiative transport equation for classical l...
详细信息
We consider the propagation of two-photon light in a random medium. We show that the Wigner transform of the two-photon amplitude obeys an equation that is analogous to the radiative transport equation for classical light. Using this result, we investigate the propagation of an entangled photon pair.
We consider semidefinite programs (SDPs) with equality constraints. The variable to be optimized is a positive semidefinite matrix X of size n. Following the Burer–Monteiro approach, we optimize a factor Y of size n&...
详细信息
We consider the problem of reconstructing a maximally parsimonious history of network evolution under models that support gene duplication and loss and independent interaction gain and loss. We introduce a combinatori...
详细信息
Many data-science problems can be formulated as an inverse problem, where the parameters are estimated by minimizing a proper loss function. When complicated black-box models are involved, derivative-free optimization...
详细信息
暂无评论