咨询与建议

限定检索结果

文献类型

  • 844 篇 期刊文献
  • 77 篇 会议
  • 2 册 图书

馆藏范围

  • 923 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 742 篇 理学
    • 424 篇 物理学
    • 291 篇 数学
    • 143 篇 统计学(可授理学、...
    • 114 篇 生物学
    • 102 篇 化学
    • 54 篇 系统科学
    • 49 篇 地球物理学
    • 27 篇 天文学
  • 525 篇 工学
    • 174 篇 计算机科学与技术...
    • 129 篇 软件工程
    • 94 篇 材料科学与工程(可...
    • 90 篇 电子科学与技术(可...
    • 74 篇 电气工程
    • 73 篇 生物工程
    • 72 篇 化学工程与技术
    • 66 篇 力学(可授工学、理...
    • 56 篇 控制科学与工程
    • 55 篇 光学工程
    • 54 篇 动力工程及工程热...
    • 47 篇 生物医学工程(可授...
    • 35 篇 信息与通信工程
    • 25 篇 仪器科学与技术
    • 25 篇 核科学与技术
    • 17 篇 冶金工程
  • 69 篇 管理学
    • 38 篇 管理科学与工程(可...
    • 26 篇 图书情报与档案管...
    • 24 篇 工商管理
  • 48 篇 医学
    • 38 篇 临床医学
    • 34 篇 基础医学(可授医学...
    • 19 篇 药学(可授医学、理...
  • 18 篇 农学
  • 14 篇 法学
  • 7 篇 经济学
  • 2 篇 教育学
  • 1 篇 军事学

主题

  • 22 篇 molecular dynami...
  • 15 篇 machine learning
  • 13 篇 density function...
  • 11 篇 inverse problems
  • 11 篇 microstructure
  • 11 篇 gravitational wa...
  • 11 篇 classical statis...
  • 9 篇 galaxies
  • 9 篇 deep neural netw...
  • 9 篇 monte carlo meth...
  • 8 篇 jamming
  • 8 篇 deep learning
  • 8 篇 mean square erro...
  • 7 篇 first-principles...
  • 7 篇 diffusion
  • 7 篇 gravitational wa...
  • 7 篇 atomic & molecul...
  • 6 篇 ground state
  • 6 篇 sphere packings
  • 6 篇 electronic struc...

机构

  • 53 篇 program in appli...
  • 48 篇 department of ch...
  • 45 篇 program in appli...
  • 35 篇 graduate school ...
  • 30 篇 department of ph...
  • 30 篇 institute of app...
  • 28 篇 department of ch...
  • 24 篇 department of ph...
  • 22 篇 graduate group i...
  • 22 篇 princeton instit...
  • 19 篇 institute for pl...
  • 18 篇 university of so...
  • 18 篇 graduate school ...
  • 17 篇 scuola di ingegn...
  • 17 篇 infn sezione di ...
  • 17 篇 dipartimento di ...
  • 17 篇 university of ma...
  • 16 篇 department of as...
  • 16 篇 king’s college l...
  • 16 篇 the university o...

作者

  • 63 篇 salvatore torqua...
  • 31 篇 torquato salvato...
  • 28 篇 zhang linfeng
  • 26 篇 weinan e.
  • 21 篇 s. torquato
  • 21 篇 jasra ajay
  • 19 篇 c. kim
  • 19 篇 perdikaris paris
  • 18 篇 g. moreno
  • 17 篇 r. takahashi
  • 17 篇 j. c. bayley
  • 17 篇 k. komori
  • 17 篇 t. kajita
  • 17 篇 f. hellman
  • 17 篇 m. kinley-hanlon
  • 17 篇 t. mcrae
  • 17 篇 a. parisi
  • 17 篇 t. sawada
  • 17 篇 s. rowan
  • 17 篇 s. m. aronson

语言

  • 885 篇 英文
  • 29 篇 其他
  • 7 篇 中文
检索条件"机构=graduate program in Applied Mathematics and Computational Science"
923 条 记 录,以下是71-80 订阅
排序:
Exploring the difficulty of estimating win probability: a simulation study
arXiv
收藏 引用
arXiv 2024年
作者: Brill, Ryan S. Yurko, Ronald Wyner, Abraham J. Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania United States Dept. of Statistics and Data Science Carnegie Mellon University United States Dept. of Statistics and Data Science The Wharton School University of Pennsylvania United States
Estimating win probability is one of the classic modeling tasks of sports analytics. Many widely used win probability estimators use machine learning to fit the relationship between a binary win/loss outcome variable ... 详细信息
来源: 评论
A statistical mechanics framework for constructing non-equilibrium thermodynamic models
arXiv
收藏 引用
arXiv 2023年
作者: Leadbetter, Travis Purohit, Prashant K. Reina, Celia Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania PhiladelphiaPA19104 United States
Far-from-equilibrium phenomena are critical to all natural and engineered systems, and essential to biological processes responsible for life. For over a century and a half, since Carnot, Clausius, Maxwell, Boltzmann,... 详细信息
来源: 评论
LEARNING ONLY ON BOUNDARIES: A PHYSICS-INFORMED NEURAL OPERATOR FOR SOLVING PARAMETRIC PARTIAL DIFFERENTIAL EQUATIONS IN COMPLEX GEOMETRIES
arXiv
收藏 引用
arXiv 2023年
作者: Fang, Zhiwei Wang, Sifan Perdikaris, Paris Graduate Group in Applied Mathematics Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Mechanichal Engineering Applied Mechanics University of Pennsylvania PhiladelphiaPA19104 United States
Recently deep learning surrogates and neural operators have shown promise in solving partial differential equations (PDEs). However, they often require a large amount of training data and are limited to bounded domain... 详细信息
来源: 评论
An Expert's Guide to Training Physics-informed Neural Networks
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Sifan Wang, Hanwen Sankaran, Shyam Perdikaris, Paris Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania PhiladelphiaPA19104 United States
Physics-informed neural networks (PINNs) have been popularized as a deep learning framework that can seamlessly synthesize observational data and partial differential equation (PDE) constraints. Their practical effect... 详细信息
来源: 评论
Moving from Machine Learning to Statistics: the case of Expected Points in American football
arXiv
收藏 引用
arXiv 2024年
作者: Brill, Ryan S. Yee, Ryan Deshpande, Sameer K. Wyner, Abraham J. Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania United States Dept. of Statistics University of Wisconsin–Madison United States Dept. of Statistics and Data Science The Wharton School University of Pennsylvania United States
Expected points is a value function fundamental to player evaluation and strategic in-game decision-making across sports analytics, particularly in American football. To estimate expected points, football analysts use... 详细信息
来源: 评论
ENSEMBLE LEARNING FOR PHYSICS INFORMED NEURAL NETWORKS: A GRADIENT BOOSTING APPROACH
arXiv
收藏 引用
arXiv 2023年
作者: Fang, Zhiwei Wang, Sifan Perdikaris, Paris Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Mechanichal Engineering and Applied Mechanics University of Pennsylvania PhiladelphiaPA19104 United States
While the popularity of physics-informed neural networks (PINNs) is steadily rising, to this date, conventional PINNs have not been successful in simulating multi-scale and singular perturbation problems. In this work... 详细信息
来源: 评论
Multilevel Particle Filters for a Class of Partially Observed Piecewise Deterministic Markov Processes
arXiv
收藏 引用
arXiv 2023年
作者: Jasra, Ajay Kamatani, Kengo Maama, Mohamed Applied Mathematics and Computational Science Program Computer Electrical and Mathematical Sciences and Engineering Division King Abdullah University of Science and Technology Thuwal23955-6900 Saudi Arabia Institute of Statistical Mathematics Tokyo190-0014 Japan
In this paper we consider the filtering of a class of partially observed piecewise deterministic Markov processes (PDMPs). In particular, we assume that an ordinary differential equation (ODE) drives the deterministic... 详细信息
来源: 评论
Unbiased Parameter Estimation for Bayesian Inverse Problems
arXiv
收藏 引用
arXiv 2025年
作者: Chada, Neil K. Jasra, Ajay Maama, Mohamed Tempone, Raul Department of Mathematics City University of Hong Kong China School of Data Science The Chinese University of Hong Kong Shenzhen CN Shenzhen China Applied Mathematics and Computational Science Program Computer Electrical and Mathematical Sciences and Engineering Division King Abdullah University of Science and Technology Thuwal23955-6900 Saudi Arabia
In this paper we consider the estimation of unknown parameters in Bayesian inverse problems. In most cases of practical interest, there are several barriers to performing such estimation, This includes a numerical app... 详细信息
来源: 评论
SR-CLD: spatially-resolved chord length distributions for statistical description, visualization, and alignment of non-uniform microstructures
arXiv
收藏 引用
arXiv 2024年
作者: Whitman, Sheila E. Latypov, Marat I. Graduate Interdisciplinary Program in Applied Mathematics University of Arizona TucsonAZ85721 United States Department of Materials Science and Engineering University of Arizona TucsonAZ85721 United States
This study introduces the calculation of spatially-resolved chord length distribution (SR-CLD) as an efficient approach for quantifying and visualizing non-uniform microstructures in heterogeneous materials. SR-CLD en... 详细信息
来源: 评论
AnisoGNN: graph neural networks generalizing to anisotropic properties of polycrystals
arXiv
收藏 引用
arXiv 2024年
作者: Hu, Guangyu Latypov, Marat I. Department of Materials Science and Engineering University of Arizona TucsonAZ85721 United States Graduate Interdisciplinary Program in Applied Mathematics University of Arizona TucsonAZ85721 United States
We present AnisoGNNs - graph neural networks (GNNs) that generalize predictions of anisotropic properties of polycrystals in arbitrary testing directions without the need in excessive training data. To this end, we de... 详细信息
来源: 评论