咨询与建议

限定检索结果

文献类型

  • 163 篇 会议
  • 21 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 189 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 107 篇 工学
    • 69 篇 计算机科学与技术...
    • 58 篇 软件工程
    • 27 篇 信息与通信工程
    • 22 篇 光学工程
    • 19 篇 控制科学与工程
    • 15 篇 机械工程
    • 13 篇 电气工程
    • 9 篇 交通运输工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 生物工程
    • 6 篇 化学工程与技术
    • 5 篇 电子科学与技术(可...
    • 4 篇 土木工程
    • 3 篇 仪器科学与技术
    • 3 篇 建筑学
    • 3 篇 航空宇航科学与技...
    • 1 篇 材料科学与工程(可...
    • 1 篇 冶金工程
    • 1 篇 动力工程及工程热...
  • 63 篇 理学
    • 47 篇 数学
    • 20 篇 物理学
    • 10 篇 统计学(可授理学、...
    • 9 篇 生物学
    • 3 篇 化学
    • 3 篇 系统科学
    • 1 篇 大气科学
  • 17 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 10 篇 图书情报与档案管...
    • 2 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学

主题

  • 48 篇 pattern recognit...
  • 34 篇 image processing
  • 26 篇 image segmentati...
  • 17 篇 shape
  • 16 篇 automation
  • 15 篇 computer vision
  • 15 篇 image reconstruc...
  • 14 篇 image analysis
  • 12 篇 cameras
  • 8 篇 ceramics
  • 7 篇 mobile robots
  • 7 篇 computer graphic...
  • 7 篇 feature extracti...
  • 7 篇 robustness
  • 6 篇 image edge detec...
  • 6 篇 robot sensing sy...
  • 6 篇 visualization
  • 6 篇 biomedical imagi...
  • 6 篇 image color anal...
  • 6 篇 pattern analysis

机构

  • 21 篇 pattern recognit...
  • 15 篇 pattern recognit...
  • 9 篇 pattern recognit...
  • 6 篇 institute for co...
  • 6 篇 institute of com...
  • 5 篇 image processing...
  • 5 篇 faculty of compu...
  • 4 篇 institute of com...
  • 4 篇 pattern recognit...
  • 4 篇 vienna universit...
  • 4 篇 institute for co...
  • 4 篇 pattern recognit...
  • 4 篇 pattern recognit...
  • 3 篇 institute for co...
  • 3 篇 pattern recognit...
  • 3 篇 pattern recognit...
  • 3 篇 the institute of...
  • 3 篇 image processing...
  • 2 篇 pattern recognit...
  • 2 篇 japan advanced i...

作者

  • 29 篇 kropatsch walter...
  • 15 篇 r. sablatnig
  • 15 篇 sablatnig robert
  • 12 篇 m. kampel
  • 12 篇 robert sablatnig
  • 11 篇 h. bischof
  • 11 篇 bischof horst
  • 11 篇 sergiu nedevschi
  • 10 篇 haxhimusa yll
  • 9 篇 kampel martin
  • 8 篇 walter g. kropat...
  • 6 篇 kampel m.
  • 5 篇 menard christian
  • 5 篇 g. langs
  • 5 篇 langs georg
  • 4 篇 glantz roland
  • 4 篇 walter kropatsch
  • 4 篇 thirde david
  • 4 篇 ion adrian
  • 4 篇 lettner martin

语言

  • 184 篇 英文
  • 4 篇 其他
  • 1 篇 中文
检索条件"机构=head of the Image Processing and Pattern Recognition Group"
189 条 记 录,以下是171-180 订阅
排序:
Stroke detection of brush strokes in portrait miniatures using a semi-parametric and a model based approach
Stroke detection of brush strokes in portrait miniatures usi...
收藏 引用
International Conference on pattern recognition
作者: T. Melzer P. Kammerer E. Zolda Pattern Recognition & Image Processing Group University of Technology Vienna Vienna Austria
The arrangement of brush strokes is an important criterion in classifying portrait miniatures. In order to detect single brush strokes we used both a model based and a semi-parametric, neural network approach. The per... 详细信息
来源: 评论
Hierarchical classification of paintings using face- and brush stroke models
Hierarchical classification of paintings using face- and bru...
收藏 引用
International Conference on pattern recognition
作者: R. Sablatnig P. Kammerer E. Zolda Institute of Automation Pattern Recognition and Image Processing Group University of Technology Vienna Vienna Austria
It is often difficult to attribute works of art to a certain artist. In the case of paintings, radiological methods like X-ray and infra-red diagnosis, digital radiography, computer-tomography, etc. and color analyzes... 详细信息
来源: 评论
Minimizing the topological structure of line images  7th
收藏 引用
7th Joint IAPR International Workshop on Structural and Syntactic pattern recognition, SSPR 1998 and 2nd International Workshop on Statistical Techniques in pattern recognition, SPR 1998
作者: Kropatsch, Walter G. Burge, Mark Vienna University of Technology Institute of Automation 183/2 Pattern Recognition and Image Processing Group Treitlstr.3 WienA-1040 Austria Johannes Kepler University Institute of Systems Science Computer Vision Laboratory LinzA-4040 Austria
We present a new algorithm based on Dual Graph Contraction (DGC) to transform the Run Graph into its Minimum Line Property Preserving (MLPP) form which, when implemented in parallel, requires O(log(longestcurve)) step... 详细信息
来源: 评论
Object-detection with a varying number of eigenspace projections
Object-detection with a varying number of eigenspace project...
收藏 引用
14th International Conference on pattern recognition, ICPR 1998
作者: Reiter, Michael Matas, Jiri Pattern Recognition and Image Processing Group Institute for Automation Vienna University of Technology A-1040 Vienna Austria CVSSP School of EE IT and Mathematics University of Surrey Guildford Surrey GU2 5XH United Kingdom
We present a method allowing a significant speed-up of the eigen-detection method (detection based on principle component analysis). We derive a formula for an upper bound on the class-conditional probability (or equi... 详细信息
来源: 评论
Object-detection with a varying number of eigenspace projections
Object-detection with a varying number of eigenspace project...
收藏 引用
International Conference on pattern recognition
作者: M. Reiter J. Matas Pattern Recognition and Image Processing Group Institute for Automation University of Technology Vienna Vienna Austria CVSSP School of EE IT and Mathematics University of Surrey Guildford Surrey UK
We present a method allowing a significant speed-up of the eigen-detection method (detection based on principle component analysis). We derive a formula for an upper bound on the class-conditional probability (or equi... 详细信息
来源: 评论
A Region-Based Representation of images in MARS
收藏 引用
Journal of VLSI Signal processing Systems for Signal, image, and Video Technology 1998年 第1-2期20卷 137-150页
作者: Servetto, Sergio D. Rui, Yong Ramchandran, Kannan Huang, Thomas S. Beckman Inst. Adv. Sci. and Technol. Univ. Illinois at Urbana-Champaign Urbana IL 61801 United States Universidad Nacional de La Plata Argentina Univ. Illinois at Urbana-Champaign United States Comp. Res. Adv. Applications Group IBM Argentina Argentina Image Formation and Processing Group Beckman Institute UIUC United States Department of Computer Science UNLP Argentina Dept. of Elec. and Comp. Engineering UIUC United States Multimedia Commun. Res. Department Bell Laboratories Murray Hill NJ United States Info. Sciences Research Department AT and T Labs. Florham Park NJ United States Department of Computer Science UIUC United States Southeast University China Tsinghua University China University of Illinois Urbana-Champaign IL United States Image Formation and Processing Group Beckman Inst. Advance Sci. Technol. UIUC United States Vis. Technol. Grp. of Microsoft Res. Redmond WA United States City College of New York United States Columbia University United States AT and T Bell Labs. United States Ctr. for Telecommunications Research Columbia University United States Elec. and Comp. Eng. Department United States Beckman Institute Coordinated Science Laboratory IL United States IEEE Signal Processing Society United States IEEE IMDSP Technical Committee United States IEEE Transactions on Image Proc. United States National Taiwan University Taipei Taiwan Massachusetts Inst. of Technology Cambridge MA United States Department of Electrical Engineering MIT United States School of Electrical Engineering United States Lab. for Info. and Signal Processing Purdue University United States Dept. of Elec. and Comp. Engineering United States Coordinated Science Laboratory United States Image Formation and Processing Group Beckman Inst. Adv. Sci. and Technol. United States MIT Lincoln Laboratory IBM Thomas J. Watson Research Center Rheinishes Landes Museum Bonn Germany Swiss Institutes of Technology Zurich Switzerland Swiss Institutes of Technology Lausanne S
We study the problem of representing images within a multimedia Database Management System (DBMS), in order to support fast retrieval operations without compromising storage efficiency. To achieve this goal, we propos...
来源: 评论
Stereo correspondences in scale space  3rd
Stereo correspondences in scale space
收藏 引用
3rd Asian Conference on Computer Vision, ACCV 1998
作者: Menard, Christian Pattern Recognition and Image Processing Group Vienna University of Technology TreitlstraBe 3/183/2 ViennaA-1040 Austria
A central problem in stereo matching using correlation techniques lies in selecting the size of the search window. Small windows contain only a small number of data points, and thus are very sensitive to noise and the... 详细信息
来源: 评论
Adaptive stereo matching in correlation scale-space  9th
Adaptive stereo matching in correlation scale-space
收藏 引用
9th International Conference on image Analysis and processing, ICIAP 1997
作者: Menard, Christian Kropatsch, Walter G. Pattern Recognition and Image Processing Group Vienna University of Technology Treitlstraße 3/183/2 ViennaA-1040 Austria
Stereo computes the distance of objects, "their depth", from two images of two cameras using the triangulation principle. Points of imaged objects are mapped in different locations in the two stereo images. ... 详细信息
来源: 评论
Stereo matching using M-estimators  7th
Stereo matching using M-estimators
收藏 引用
7th International Conference on Computer Analysis of images and patterns, CAIP 1997
作者: Menard, Christian Leonardis, Aleš Pattern Recognition and Image Processing Group Vienna University of Technology Treitlstraße 3/183/2 Vienna Austria University of Ljubljana Slovenia
Stereo computation is just one of the vision problems where the presence of outliers cannot be neglected. Most standard algorithms make unrealistic assumptions about noise distributions, which leads to erroneous resul... 详细信息
来源: 评论
Computational complexity reduction in eigenspace approaches  7th
Computational complexity reduction in eigenspace approaches
收藏 引用
7th International Conference on Computer Analysis of images and patterns, CAIP 1997
作者: Leonardis, Aleš Bischof, Horst Vienna University of Technology Institute for Automation Pattern Recognition and Image Processing Group Treitlstraße 3/1832 ViennaA-1040 Austria University of LjubIjana Tržaška 25 LjubljanaSI-1001 Slovenia
Matching of appearance-based object representations using eigenimages is computationally very demanding. Most commonly, to recognize an object in an image, parts of the input image are projected onto the eigenspace an... 详细信息
来源: 评论