Early diagnosis-treatment of melanoma is very important because of its dangerous nature and rapid spread. When diagnosed correctly and early, the recovery rate of patients increases significantly. Physical methods are...
详细信息
Cyberbullying,a critical concern for digital safety,necessitates effective linguistic analysis tools that can navigate the complexities of language use in online *** tackle this challenge,our study introduces a new ap...
详细信息
Cyberbullying,a critical concern for digital safety,necessitates effective linguistic analysis tools that can navigate the complexities of language use in online *** tackle this challenge,our study introduces a new approach employing Bidirectional Encoder Representations from the Transformers(BERT)base model(cased),originally pretrained in *** model is uniquely adapted to recognize the intricate nuances of Arabic online communication,a key aspect often overlooked in conventional cyberbullying detection *** model is an end-to-end solution that has been fine-tuned on a diverse dataset of Arabic social media(SM)tweets showing a notable increase in detection accuracy and sensitivity compared to existing *** results on a diverse Arabic dataset collected from the‘X platform’demonstrate a notable increase in detection accuracy and sensitivity compared to existing methods.E-BERT shows a substantial improvement in performance,evidenced by an accuracy of 98.45%,precision of 99.17%,recall of 99.10%,and an F1 score of 99.14%.The proposed E-BERT not only addresses a critical gap in cyberbullying detection in Arabic online forums but also sets a precedent for applying cross-lingual pretrained models in regional language applications,offering a scalable and effective framework for enhancing online safety across Arabic-speaking communities.
The integration of social networks with the Internet of Things (IoT) has been explored in recent research, giving rise to the Social Internet of Things (SIoT). One promising application of SIoT is viral marketing, whi...
详细信息
This paper comprehensively analyzes the Manta Ray Foraging Optimization(MRFO)algorithm and its integration into diverse academic *** in 2020,the MRFO stands as a novel metaheuristic algorithm,drawing inspiration from ...
详细信息
This paper comprehensively analyzes the Manta Ray Foraging Optimization(MRFO)algorithm and its integration into diverse academic *** in 2020,the MRFO stands as a novel metaheuristic algorithm,drawing inspiration from manta rays’unique foraging behaviors—specifically cyclone,chain,and somersault *** biologically inspired strategies allow for effective solutions to intricate physical *** its potent exploitation and exploration capabilities,MRFO has emerged as a promising solution for complex optimization *** utility and benefits have found traction in numerous academic *** its inception in 2020,a plethora of MRFO-based research has been featured in esteemed international journals such as IEEE,Wiley,Elsevier,Springer,MDPI,Hindawi,and Taylor&Francis,as well as at international conference *** paper consolidates the available literature on MRFO applications,covering various adaptations like hybridized,improved,and other MRFO variants,alongside optimization *** trends indicate that 12%,31%,8%,and 49%of MRFO studies are distributed across these four categories respectively.
As one of the most popular blockchain platforms supporting smart contracts, Ethereum has caught the interest of both investors and criminals. Differently from traditional financial scenarios, executing Know Your Custo...
详细信息
With the continuous advancement of satellite technology, remote sensing images has been increasingly applied in fields such as urban planning, environmental monitoring, and disaster response. However, remote sensing i...
详细信息
With the continuous advancement of satellite technology, remote sensing images has been increasingly applied in fields such as urban planning, environmental monitoring, and disaster response. However, remote sensing images often feature small target sizes and complex backgrounds, posing significant computational challenges for object detection tasks. To address this issue, this paper proposes a lightweight remote sensing images object detection algorithm based on YOLOv9. The proposed algorithm incorporates the SimRMB module, which effectively reduces computational complexity while improving the efficiency and accuracy of feature extraction. Through a dynamic attention mechanism, SimRMB is capable of focusing on important regions while minimizing background interference, and by integrating residual learning and skip connections, it ensures the stability of deep networks. To further enhance detection performance, the FasterRepNCSPELAN4 module is introduced, which employs PConv operations to reduce computational load and memory usage. It also utilizes dilated convolutions and DFC attention mechanisms to strengthen feature extraction, thereby increasing the efficiency and accuracy of object detection. Additionally, this study integrates the GhostModuleV2 module, which generates core feature maps and employs lightweight operations to create redundant features, greatly reducing the computational complexity of *** results show that on the SIMD dataset, the improved YOLOv9 model has a parameter size of 167.88 MB and GFLOPs of 208.6. Compared to the baseline YOLOv9 model (parameter size: 194.57 MB, GFLOPs: 239.0), the parameter size is reduced by 13.71%, GFLOPs are reduced by 12.72%, and detection accuracy is improved by 1.4%. These results demonstrate that the proposed lightweight YOLOv9 model effectively reduces computational overhead while maintaining excellent detection performance, providing an efficient solution for object detection tasks in resou
To improve the accuracy of steel surface defect detection, this study proposes an improved multi-directional optimization model based on the YOLOv10n algorithm. First, we introduce innovations to the convolution (C2F)...
详细信息
Hypernym detection and discovery are fundamental tasks in natural language *** former task aims to identify all possible hypernyms of a given hyponym term,whereas the latter attempts to determine whether the given two...
详细信息
Hypernym detection and discovery are fundamental tasks in natural language *** former task aims to identify all possible hypernyms of a given hyponym term,whereas the latter attempts to determine whether the given two terms hold a hypernymy relation or *** research on hypernym detection and discovery tasks projects a term into various semantic spaces with single mapping *** their success,these methods may not be adequate in capturing complex semantic relevance between hyponym/hypernymy pairs in two ***,they may fall short in modeling the hierarchical structure in the hypernymy relations,which may help them learn better term ***,the polysemy phenomenon that hypernyms may express distinct senses is *** this paper,we propose a Multi-Projection Recurrent model(MPR)to simultaneously capture the hierarchical relationships between terms and deal with diverse senses caused by the polysemy ***,we build a multi-projection mapping block to deal with the polysemy phenomenon,which learns various word senses by multiple ***,we adopt a hierarchy-aware recurrent block with the recurrent operation followed by a multi-hop aggregation module to capture the hierarchical structure of hypernym *** on 11 benchmark datasets in various task settings illustrate that our multi-projection recurrent model outperforms the *** experimental analysis and case study demonstrate that our multi-projection module and the recurrent structure are effective for hypernym detection and discovery tasks.
The detection of road defects is crucial for ensuring vehicular safety and facilitating the prompt repair of roadway imperfections. Existing YOLOv8-based models face the following issues: extraction capabilities and i...
详细信息
While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),...
详细信息
While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),given that these techniques are increasingly being used by malicious actors to compromise IoT *** an ample body of research focusing on conventional AI methods exists,there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security *** contribute to this nascent research stream,a novel AI-driven security system denoted as“AI2AI”is presented in this ***2AI employs AI techniques to enhance the performance and optimize security mechanisms within the IoT *** also introduce the Genetic Algorithm Anomaly Detection and Prevention Deep Neural Networks(GAADPSDNN)sys-tem that can be implemented to effectively identify,detect,and prevent cyberattacks targeting IoT ***,this system demonstrates adaptability to both federated and centralized learning environments,accommodating a wide array of IoT *** evaluation of the GAADPSDNN system using the recently complied WUSTL-IIoT and Edge-IIoT datasets underscores its *** an impressive overall accuracy of 98.18%on the Edge-IIoT dataset,the GAADPSDNN outperforms the standard deep neural network(DNN)classifier with 94.11%***,with the proposed enhancements,the accuracy of the unoptimized random forest classifier(80.89%)is improved to 93.51%,while the overall accuracy(98.18%)surpasses the results(93.91%,94.67%,94.94%,and 94.96%)achieved when alternative systems based on diverse optimization techniques and the same dataset are *** proposed optimization techniques increase the effectiveness of the anomaly detection system by efficiently achieving high accuracy and reducing the computational load on IoT devices through the adaptive selection of active features.
暂无评论