Early identification of skin cancer is mandatory to minimize the worldwide death rate as this disease is covering more than 30% of mortality rates in young and adults. Researchers are in the move of proposing advanced...
详细信息
The efficiency of multi-objective evolutionary algorithms (MOEAs) in tackling issues with multiple objectives is examined. However, it is noted that current MOEA-based feature selection techniques often converge towar...
详细信息
The efficiency of multi-objective evolutionary algorithms (MOEAs) in tackling issues with multiple objectives is examined. However, it is noted that current MOEA-based feature selection techniques often converge towards the center of the Pareto front due to inadequate selection forces. The study proposes the utilization of a novel approach known as MOEA/D, which partitions complex multi-objective problems into smaller, more feasible single-objective sub-problems. Each sub-problem may then be addressed using an equal amount of computational resources. The predetermined size of the neighborhood used by MOEA/D may lead to a delay in the algorithm's merging and reduce the effectiveness of the failure. The paper proposes the Adaptive Neighbourhood Adjustment Strategy (ANAS) as a novel approach to improve the efficiency of multi-objective optimisation algorithms in order to tackle this issue. The ANAS algorithm allows for adaptive adjustment of the subproblem neighborhood size, hence enhancing the trade-off between merging and variety. In the following section of the study, a novel feature selection technique called MOGHHNS3/D-ANA is introduced. This technique utilizes ANAS to expand the potential solutions for a particular subproblem. The approach evaluates the chosen features using the Regulated Extreme Learning Machine (RELM) classifier on sixteen benchmark datasets. The experimental results demonstrate that MOGHHNS3/D-ANA outperforms four commonly employed multi-objective techniques in terms of accuracy, precision, recall, F1 score, coverage, hamming loss, ranking loss, and training time, error. The APBI approach in decomposition-based multi-objective optimization focuses on handling constraints by adjusting penalty parameters to guide the search towards feasible solutions. On the other hand, the ANA approach focuses on dynamically adjusting the neighborhood size or search direction based on the proximity of solutions in the detached space to adapt the search process.
The uneven growth in internet technologies and electronic information is giving birth to the information overload. Diverse algorithms handle the problem of information overload with uneven outcomes. Recent trends in r...
详细信息
Cloud providers frequently utilize two tightly coupled resource management strategies like task scheduling & data replication to boost the performance of the system generally, guaranteeing service level agreement ...
详细信息
Recently, deep learning has been widely employed across various domains. The Convolution Neural Network (CNN), a popular deep learning algorithm, has been successfully utilized in object recognition tasks, such as fac...
详细信息
Perusing web data items such as shopping products is a core online user activity. To prevent information overload, the content associated with data items is typically dispersed across multiple webpage sections over mu...
详细信息
Breast cancer is a widespread and serious condition that poses a significant threat to women's health globally, contributing significantly to mortality rates. Machine learning tools play a critical role in both th...
详细信息
Breast cancer is a widespread and serious condition that poses a significant threat to women's health globally, contributing significantly to mortality rates. Machine learning tools play a critical role in both the effective management and early detection of this disease. Feature selection (FS) methods are essential for identifying the most impactful features to improve breast cancer diagnosis. These methods reduce data dimensionality, eliminate irrelevant information, enhance learning accuracy, and improve the comprehensibility of results. However, the increasing complexity and dimensionality of cancer data pose substantial challenges to many existing FS methods, thereby reducing their efficiency and effectiveness. To overcome these challenges, numerous studies have demonstrated the success of nature-inspired optimization (NIO) algorithms across various domains. These algorithms excel in mimicking natural processes and efficiently solving complex optimization problems. Building on these advancements, we propose an innovative approach that combines powerful feature selection methods based on NIO techniques with a soft voting classifier. The NIO techniques employed include the Genetic Algorithm, Cuckoo Search, Salp Swarm, Jaya, Flower Pollination, Whale Optimization, Sine Cosine, Harris Hawks, and Grey Wolf Optimization algorithms. The Soft Voting Classifier integrates various machine learning models, including Support Vector Machines, Gaussian Naive Bayes, Logistic Regression, Decision Tree, and Gradient Boosting. These are used to improve the effectiveness and accuracy of breast cancer diagnosis. The proposed approach has been empirically evaluated using a variety of evaluation measures, such as F1 score, precision, recall, accuracy and Area Under the Curve (AUC), for performance comparison with individual machine learning techniques. The results demonstrate that the soft-voting ensemble technique, particularly when combined with feature selection based on the Jaya
Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention *** machine learning classifiers have emerged as promising tools for malware ***,there remain...
详细信息
Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention *** machine learning classifiers have emerged as promising tools for malware ***,there remains a need for comprehensive studies that compare the performance of different classifiers specifically for Windows malware *** this gap can provide valuable insights for enhancing cybersecurity *** numerous studies have explored malware detection using machine learning techniques,there is a lack of systematic comparison of supervised classifiers for Windows malware *** the relative effectiveness of these classifiers can inform the selection of optimal detection methods and improve overall security *** study aims to bridge the research gap by conducting a comparative analysis of supervised machine learning classifiers for detecting malware on Windows *** objectives include Investigating the performance of various classifiers,such as Gaussian Naïve Bayes,K Nearest Neighbors(KNN),Stochastic Gradient Descent Classifier(SGDC),and Decision Tree,in detecting Windows *** the accuracy,efficiency,and suitability of each classifier for real-world malware detection *** the strengths and limitations of different classifiers to provide insights for cybersecurity practitioners and *** recommendations for selecting the most effective classifier for Windows malware detection based on empirical *** study employs a structured methodology consisting of several phases:exploratory data analysis,data preprocessing,model training,and *** data analysis involves understanding the dataset’s characteristics and identifying preprocessing *** preprocessing includes cleaning,feature encoding,dimensionality reduction,and optimization to prepare the data for *** training utilizes various
Cybersecurity is crucial in today’s interconnected world, as digital technologies are increasingly used in various sectors. The risk of cyberattacks targeting financial, military, and political systems has increased ...
详细信息
Photo composition is one of the most important factors in the aesthetics of *** a popular application,composition recommendation for a photo focusing on a specific subject has been ignored by recent deep-learning-base...
详细信息
Photo composition is one of the most important factors in the aesthetics of *** a popular application,composition recommendation for a photo focusing on a specific subject has been ignored by recent deep-learning-based composition recommendation *** this paper,we propose a subject-aware image composition recommendation method,SAC-Net,which takes an RGB image and a binary subject window mask as input,and returns good compositions as crops containing the *** model first determines candidate scores for all possible coarse cropping *** crops with high candidate scores are selected and further refined by regressing their corner points to generate the output recommended cropping *** final scores of the refined crops are predicted by a final score regression *** existing methods that need to preset several cropping windows,our network is able to automatically regress cropping windows with arbitrary aspect ratios and *** propose novel stability losses for maximizing smoothness when changing cropping windows along with view *** results show that our method outperforms state-of-the-art methods not only on the subject-aware image composition recommendation task,but also for general purpose composition *** also have designed a multistage labeling scheme so that a large amount of ranked pairs can be produced *** use this scheme to propose the first subject-aware composition dataset SACD,which contains 2777 images,and more than 5 million composition ranked *** SACD dataset is publicly available at https://***/SACD/.
暂无评论