In contemporary times, there has been a notable shift among youth and young adults towards prioritizing their health, encompassing both physical and mental well-being. Recognizing this trend, innovative solutions have...
详细信息
Typically, object detection methods for autonomous driving that rely on supervised learning make the assumption of a consistent feature distribution between the training and testing data, this such assumption may fail...
详细信息
Typically, object detection methods for autonomous driving that rely on supervised learning make the assumption of a consistent feature distribution between the training and testing data, this such assumption may fail in different weather conditions. Due to the domain gap, a detection model trained under clear weather may not perform well in foggy and rainy conditions. Overcoming detection bottlenecks in foggy and rainy weather is a real challenge for autonomous vehicles deployed in the wild. To bridge the domain gap and improve the performance of object detection in foggy and rainy weather, this paper presents a novel framework for domain-adaptive object detection. The adaptations at both the image-level and objectlevel are intended to minimize the differences in image style and object appearance between domains. Furthermore, in order to improve the model's performance on challenging examples, we introduce a novel adversarial gradient reversal layer that conducts adversarial mining on difficult instances in addition to domain adaptation. Additionally, we suggest generating an auxiliary domain through data augmentation to enforce a new domain-level metric regularization. Experimental findings on public V2V benchmark exhibit a substantial enhancement in object detection specifically for foggy and rainy driving scenarios IEEE
In complex agricultural environments,cucumber disease identification is confronted with challenges like symptom diversity,environmental interference,and poor detection *** paper presents the DM-YOLO model,which is an ...
详细信息
In complex agricultural environments,cucumber disease identification is confronted with challenges like symptom diversity,environmental interference,and poor detection *** paper presents the DM-YOLO model,which is an enhanced version of the YOLOv8 framework designed to enhance detection accuracy for cucumber *** detection models have a tough time identifying small-scale and overlapping symptoms,especially when critical features are obscured by lighting variations,occlusion,and background *** proposed DM-YOLO model combines three innovative modules to enhance detection performance in a collective ***,the MultiCat module employs a multi-scale feature processing strategy with adaptive pooling,which decomposes input features into large,medium,and small *** approach ensures that high-level features are extracted and fused effectively,effectively improving the detection of smaller and complex patterns that are often missed by traditional ***,the ADC2f module incorporates an attention mechanism and deep separable convolution,which allows the model to focus on the most relevant regions of the input features while reducing computational *** identification and localization of diseases like downy mildew and powdery mildew can be enhanced by this combination in conditions of lighting changes and ***,the C2fe module introduces a Global Context Block that uses attention mechanisms to emphasize essential regions while suppressing those that are not *** design enables the model to capture more contextual information,which improves detection performance in complex backgrounds and small-object scenarios.A custom cucumber disease dataset and the PlantDoc dataset were used for thorough *** results showed that DM-YOLO achieved a mean Average Precision(mAP50)improvement of 1.2%p on the custom dataset and 3.2%p on the PlantDoc dataset over the baseline *** results highlight
The study of graph neural networks has revealed that they can unleash new applications in a variety of disciplines using such a basic process that we cannot imagine in the context of other deep learning designs. Many ...
详细信息
Automated detection of cardiovascular diseases based on heartbeats is a difficult and demanding task in signal processing because the routine analysis of the patient’s cardiac arrhythmia is crucial to reducing the mo...
详细信息
The concept of cryptocurrency is a significant advancement in digital currencies. “Cryptocurrency” refers to a form of electronic or virtual currency that is secured through the application of encryption. It is a co...
详细信息
Runge Kutta Optimization(RUN)is a widely utilized metaheuristic ***,it suffers from these issues:the imbalance between exploration and exploitation and the tendency to fall into local optima when it solves real-world ...
详细信息
Runge Kutta Optimization(RUN)is a widely utilized metaheuristic ***,it suffers from these issues:the imbalance between exploration and exploitation and the tendency to fall into local optima when it solves real-world opti-mization *** address these challenges,this study aims to endow each individual in the population with a certain level of intelligence,allowing them to make autonomous decisions about their next optimization *** incorporating Reinforcement Learning(RL)and the Composite Mutation Strategy(CMS),each individual in the population goes through additional self-improvement steps after completing the original algorithmic phases,referred to as *** is,each individual in the RUN population is trained intelligently using RL to independently choose three different differentiation strategies in CMS when solving different *** validate the competitiveness of RLRUN,comprehensive empirical tests were conducted using the IEEE CEC 2017 benchmark *** comparative experiments with 13 conventional algorithms and 10 advanced algorithms were *** experimental results demonstrated that RLRUN excels in convergence accuracy and speed,surpassing even some champion ***,this study introduced a binary version of RLRUN,named bRLRUN,which was employed for the feature selection *** 24 high-dimensional datasets encompassing UCI datasets and SBCB machine learning library microarray datasets,bRLRUN occupies the top position in classification accuracy and the number of selected feature subsets compared to some *** conclusion,the proposed algorithm demonstrated that it exhibits a strong competitive advantage in high-dimensional feature selection for complex datasets.
In this paper, the superiority of Ge/Ge0.98Sn0.02asymmetrical supper lattice structure based vertically doped nano-scale pin photo-sensor under operating wavelength of 1200 nm to 2200 nm is reported. The aut...
详细信息
Unusual crowd analysis is an important problem in surveillance video due to their features cannot be extracted efficiently on the crowd scenes. To overcome this challenge, this paper introduced the appearance and moti...
详细信息
Internet of Things (IoT) connects billions of devices and tiny sensors enabled with Low-Power and Lossy Networks (LLNs) to provide real time data transfer. These LLNs work as s backbone of complete IoT ecosystem which...
详细信息
暂无评论