咨询与建议

限定检索结果

文献类型

  • 188 篇 期刊文献
  • 129 篇 会议

馆藏范围

  • 317 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 216 篇 工学
    • 154 篇 计算机科学与技术...
    • 136 篇 软件工程
    • 42 篇 生物医学工程(可授...
    • 40 篇 光学工程
    • 40 篇 生物工程
    • 35 篇 信息与通信工程
    • 32 篇 控制科学与工程
    • 27 篇 电气工程
    • 23 篇 电子科学与技术(可...
    • 13 篇 机械工程
    • 11 篇 化学工程与技术
    • 10 篇 仪器科学与技术
    • 9 篇 动力工程及工程热...
    • 9 篇 安全科学与工程
    • 6 篇 交通运输工程
    • 5 篇 材料科学与工程(可...
  • 120 篇 理学
    • 58 篇 数学
    • 43 篇 生物学
    • 36 篇 物理学
    • 20 篇 统计学(可授理学、...
    • 13 篇 系统科学
    • 11 篇 化学
  • 63 篇 管理学
    • 41 篇 管理科学与工程(可...
    • 25 篇 图书情报与档案管...
    • 19 篇 工商管理
  • 33 篇 医学
    • 32 篇 临床医学
    • 27 篇 基础医学(可授医学...
    • 19 篇 药学(可授医学、理...
  • 10 篇 法学
    • 6 篇 社会学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 5 篇 农学
  • 1 篇 教育学
  • 1 篇 文学

主题

  • 13 篇 robot sensing sy...
  • 8 篇 neural networks
  • 8 篇 machine learning
  • 7 篇 intelligent robo...
  • 7 篇 mobile robots
  • 7 篇 semantics
  • 7 篇 accuracy
  • 6 篇 computer archite...
  • 6 篇 wireless sensor ...
  • 6 篇 humans
  • 6 篇 artificial intel...
  • 5 篇 deep learning
  • 5 篇 image segmentati...
  • 5 篇 subspace constra...
  • 5 篇 orbital robotics
  • 5 篇 costs
  • 5 篇 robot kinematics
  • 4 篇 laboratories
  • 4 篇 optimization
  • 4 篇 pattern recognit...

机构

  • 8 篇 distributed inte...
  • 6 篇 university of sc...
  • 6 篇 department of el...
  • 6 篇 department of el...
  • 5 篇 department of en...
  • 5 篇 graduate institu...
  • 5 篇 harbin institute...
  • 4 篇 university of wü...
  • 4 篇 guangdong univer...
  • 4 篇 department of co...
  • 4 篇 centre for medic...
  • 4 篇 department of qu...
  • 4 篇 department of el...
  • 4 篇 heidelberg divis...
  • 4 篇 computer science...
  • 4 篇 department of ra...
  • 4 篇 university of el...
  • 4 篇 nature-inspired ...
  • 4 篇 university of pe...
  • 4 篇 moe key lab of a...

作者

  • 15 篇 lynne e. parker
  • 9 篇 bakas spyridon
  • 8 篇 timofte radu
  • 6 篇 glocker ben
  • 6 篇 kofler florian
  • 6 篇 liu shuo
  • 6 篇 xiao wei
  • 6 篇 sangaiah arun ku...
  • 5 篇 javadpour amir
  • 5 篇 reinke annika
  • 5 篇 azam asilian bid...
  • 5 篇 wang yan
  • 5 篇 menze bjoern
  • 5 篇 dalca adrian v.
  • 5 篇 shahryar rahnama...
  • 4 篇 rajpoot nasir
  • 4 篇 kozubek michal
  • 4 篇 li hongwei bran
  • 4 篇 galdran adrian
  • 4 篇 godau patrick

语言

  • 290 篇 英文
  • 24 篇 其他
  • 3 篇 中文
检索条件"机构=the Distributed Intelligence Lab in the Department of Computer Science and Electrical Engineering"
317 条 记 录,以下是141-150 订阅
排序:
Full-pose Trajectory Tracking of Overactuated Multi-Rotor Aerial Vehicles with Limited Actuation Abilities
TechRxiv
收藏 引用
TechRxiv 2023年
作者: Hamandi, Mahmoud Al-Ali, Ismail Seneviratne, Lakmal Franchi, Antonio Zweiri, Yahya The Department of Aerospace Engineering Khalifa University of Science and Technology Abu Dhabi United Arab Emirates The Department of Mechanical Engineering Khalifa University Abu Dhabi United Arab Emirates Khalifa University of Science and Technology Abu Dhabi United Arab Emirates The Robotics and Mechatronics Lab Faculty of Electrical Engineering Mathematics and Computer Science University of Twente Enschede Netherlands The Department of Computer Control and Management Engineering Sapienza University of Rome Rome00185 Italy LAAS CNRS Université de Toulouse Toulouse31000 France Khalifa University Abu Dhabi United Arab Emirates Center for Artificial Intelligence and Robotics New York University Abu Dhabi Saadiyat Island Abu Dhabi129188 United Arab Emirates
This paper presents a novel optimization-based full-pose trajectory tracking method to control overactuated multirotor aerial vehicles with limited actuation abilities. The proposed method allocates feasible control i... 详细信息
来源: 评论
Afnet: Local Aggregation and Context Fusion Network for Plant Point Cloud Part Segmentation
SSRN
收藏 引用
SSRN 2024年
作者: Qi, Yanyu Guo, Ruohao Li, Zhenbo Qu, Liao Niu, Dantong College of Information and Electrical Engineering China Agricultural University Beijing100083 China National Innovation Center for Digital Fishery Beijing100083 China School of Intelligence Science and Technology Peking University Beijing100871 China Key Laboratory of Smart Farming Technologies for Aquatic Animal and Livestock Ministry of Agriculture and Rural Affairs Beijing100083 China Beijing Engineering and Technology Research Center for Internet of Things in Agriculture Beijing100083 China Electrical and Computer Engineering department Carnegie Mellon University PittsburghPA15213 United States BAIR Lab University of California BerkeleyCA94709 United States
Convolution-like models have emerged in recent years to address diverse point cloud processing tasks. However, a notable challenge persists in effectively capturing subtle spatial relationships and contextual semantic... 详细信息
来源: 评论
Unsupervised Domain Adaptation on Person Re-Identification via Dual-level Asymmetric Mutual Learning
arXiv
收藏 引用
arXiv 2023年
作者: Wu, Qiong Li, Jiahan Dai, Pingyang Ye, Qixiang Cao, Liujuan Wu, Yongjian Ji, Rongrong Institute of Artificial Intelligence The Media Analytics and Computing Laboratory Department of Artificial Intelligence School of Informatics Xiamen University Xiamen361005 China School of Information and Control Engineering China University of Mining and Technology Xuzhou221000 China The Media Analytics and Computing Laboratory Department of Artificial Intelligence School of Informatics Xiamen University Xiamen361005 China The Peng Cheng Laboratory Shenzhen518066 China The School of Electronics Electrical and Communication Engineering University of Chinese Academy of Sciences Beijing100049 China The Media Analytics and Computing Lab Department of Computer Science School of Informatics Xiamen University Xiamen361005 China The Youtu Laboratory Tencent Shanghai200233 China The Fujian Engineering Research Center of Trusted Artificial Intelligence Analysis and Application Institute of Artificial Intelligence Xiamen University Xiamen361005 China
Unsupervised domain adaptation person re-identification (Re-ID) aims to identify pedestrian images within an unlabeled target domain with an auxiliary labeled source-domain dataset. Many existing works attempt to reco... 详细信息
来源: 评论
NTIRE 2023 Image Shadow Removal Challenge Report
NTIRE 2023 Image Shadow Removal Challenge Report
收藏 引用
2023 IEEE/CVF Conference on computer Vision and Pattern Recognition Workshops, CVPRW 2023
作者: Vasluianu, Florin-Alexandru Seizinger, Tim Timofte, Radu Cui, Shuhao Huang, Junshi Tian, Shuman Fan, Mingyuan Zhang, Jiaqi Zhu, Li Wei, Xiaoming Wei, Xiaolin Luo, Ziwei Gustafsson, Fredrik K. Zhao, Zheng Sjölund, Jens Schön, Thomas B. Dong, Xiaoyi Zhang, Xi Sheryl Li, Chenghua Leng, Cong Yeo, Woon-Ha Oh, Wang-Taek Lee, Yeo-Reum Ryu, Han-Cheol Luo, Jinting Jiang, Chengzhi Han, Mingyan Wu, Qi Lin, Wenjie Yu, Lei Li, Xinpeng Jiang, Ting Fan, Haoqiang Liu, Shuaicheng Xu, Shuning Song, Binbin Chen, Xiangyu Zhang, Shile Zhou, Jiantao Zhang, Zhao Zhao, Suiyi Zheng, Huan Gao, Yangcheng Wei, Yanyan Wang, Bo Ren, Jiahuan Luo, Yan Kondo, Yuki Miyata, Riku Yasue, Fuma Naruki, Taito Ukita, Norimichi Chang, Hua-En Yang, Hao-Hsiang Chen, Yi-Chung Chiang, Yuan-Chun Huang, Zhi-Kai Chen, Wei-Ting Chen, I-Hsiang Hsieh, Chia-Hsuan Kuo, Sy-Yen Xianwei, Li Fu, Huiyuan Liu, Chunlin Ma, Huadong Fu, Binglan He, Huiming Wang, Mengjia She, Wenxuan Liu, Yu Nathan, Sabari Kansal, Priya Zhang, Zhongjian Yang, Huabin Wang, Yan Zhang, Yanru Phutke, Shruti S. Kulkarni, Ashutosh Khan, Md Raqib Murala, Subrahmanyam Vipparthi, Santosh Kumar Ye, Heng Liu, Zixi Yang, Xingyi Liu, Songhua Wu, Yinwei Jing, Yongcheng Yu, Qianhao Zheng, Naishan Huang, Jie Long, Yuhang Yao, Mingde Zhao, Feng Zhao, Bowen Ye, Nan Shen, Ning Cao, Yanpeng Xiong, Tong Xia, Weiran Li, Dingwen Xia, Shuchen Computer Vision Lab Ifi Caidas University of Würzburg Germany Computer Vision Lab Eth Zürich Switzerland Meituan Group China Department of Information Technology Uppsala University Sweden Institute of Automation Chinese Academy of Sciences Beijing China Nanjing China Maicro Nanjing China Department of Artificial Intelligence Convergence Sahmyook University Seoul Korea Republic of Megvii Technology China University of Electronic Science and Technology of China China University of Macau China China Toyota Technological Institute Japan Graduate Institute of Electronics Engineering National Taiwan University Taiwan Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan ServiceNow United States Beijing University of Post and Teleconmunication Beijing China Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education China Couger Inc. Computer Vision and Pattern Recognition Lab Indian Institute of Technology Ropar Punjab Rupnagar India Research Institute Singapore National University of Singapore Singapore Research Institute Singapore University of Sydney Australia Brain-Inspired Vision Laboratory Information Science and Technology Institution University of Science and Technology of China China State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou310027 China Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou310027 China South China University of Technology China
This work reviews the results of the NTIRE 2023 Challenge on Image Shadow Removal. The described set of solutions were proposed for a novel dataset, which captures a wide range of object-light interactions. It consist... 详细信息
来源: 评论
USED: Universal Speaker Extraction and Diarization
arXiv
收藏 引用
arXiv 2023年
作者: Ao, Junyi Yıldırım, Mehmet Sinan Tao, Ruijie Ge, Meng Wang, Shuai Qian, Yanmin Li, Haizhou Shenzhen Research Institute of Big Data School of Data Science The Chinese University of Hong Kong Shenzhen518172 China Department of Electrical and Computer Engineering National University of Singapore Singapore119077 Singapore Saw Swee Hock School of Public Health National University of Singapore Singapore117549 Singapore Shenzhen Research Institute of Big Data Shenzhen518172 China Auditory Cognition and Computational Acoustics Lab Department of Computer Science and Engineering China MoE Key Laboratory of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai200240 China
Speaker extraction and diarization are two enabling techniques for real-world speech applications. Speaker extraction aims to extract a target speaker’s voice from a speech mixture, while speaker diarization demarcat... 详细信息
来源: 评论
Model-Driven Deep Learning for Non-Coherent Massive Machine-Type Communications
arXiv
收藏 引用
arXiv 2023年
作者: Ma, Zhe Wu, Wen Gao, Feifei Shen, Xuemin The Institute for Artificial Intelligence Tsinghua University State Key Lab of Intelligent Technologies and Systems Beijing National Research Center for Information Science and Technology Department of Automation Tsinghua University Beijing100084 China The Frontier Research Center Peng Cheng Laboratory Guangdong Shenzhen518055 China The Department of Electrical and Computer Engineering University of Waterloo WaterlooONN2L 3G1 Canada
In this paper, we investigate the joint device activity and data detection in massive machine-type communications (mMTC) with a one-phase non-coherent scheme, where data bits are embedded in the pilot sequences and th... 详细信息
来源: 评论
NTIRE 2023 Challenge on 360° Omnidirectional Image and Video Super-Resolution: Datasets, Methods and Results
NTIRE 2023 Challenge on 360° Omnidirectional Image and Vide...
收藏 引用
2023 IEEE/CVF Conference on computer Vision and Pattern Recognition Workshops, CVPRW 2023
作者: Cao, Mingdeng Mou, Chong Yu, Fanghua Wang, Xintao Zheng, Yinqiang Zhang, Jian Dong, Chao Li, Gen Shan, Ying Timofte, Radu Sun, Xiaopeng Li, Weiqi Sheng, Xuhan Chen, Bin Ma, Haoyu Cheng, Ming Zhao, Shijie Huang, Huaibo Zhou, Xiaoqiang Ai, Yuang He, Ran Wu, Renlong Yang, Yi Zhang, Zhilu Zhang, Shuohao Li, Junyi Chen, Yunjin Ren, Dongwei Zuo, Wangmeng Yang, Hao-Hsiang Chen, Yi-Chung Huang, Zhi-Kai Chen, Wei-Ting Chiang, Yuan-Chun Chang, Hua-En Chen, I.-Hsiang Hsieh, Chia-Hsuan Kuo, Sy-Yen Zhang, Zebin Zhang, Jiaqi Wang, Yuhui Cui, Shuhao Huang, Junshi Zhu, Li Tian, Shuman Yu, Wei Luo, Bingchun Cui, Wanwan Xu, Tianyu Li, Chunyang Bao, Long Sun, Heng Zhang, Zhenyu Wang, Qian The University of Tokyo Japan Arc Lab Tencent Pcg China Peking University China Shenzhen Institute of Advanced Technology Cas China Platform Technologies Tencent Online Video China Computer Vision Lab Ifi & Caidas University of Würzburg Germany ByteDance China Peking University Shenzhen Graduate School China Mais&cripac Institute of Automation Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China University of Science and Technology of China China Beijing Institute of Technology China School of Information Science and Technology ShanghaiTech University China Harbin Institute of Technology China Graduate Institute of Electronics Engineering National Taiwan University Taiwan Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan ServiceNow United States ShanghaiTech University China Meituan China Xiaomi Inc
This report introduces two high-quality datasets Flickr360 and ODV360 for omnidirectional image and video super-resolution, respectively, and reports the NTIRE 2023 challenge on 360° omnidirectional image and vid... 详细信息
来源: 评论
LocalViT: Analyzing Locality in Vision Transformers
LocalViT: Analyzing Locality in Vision Transformers
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Yawei Li Kai Zhang Jiezhang Cao Radu Timofte Michele Magno Luca Benini Luc Van Goo Computer Vision Lab D-ITET ETH Zurich Switzerland Center for Artificial Intelligence and Data Science (CAIDAS) University of Wurzburg Germany Center for Project-Based Learning D-ITET ETH Zurich Switzerland Integrated Systems Laboratory D-ITET ETH Zurich Switzerland Department of Electrical Electronic and Information Engineering University of Bologna Italy Processing Speech and Images (PSI) KU Leuven Belgium
The aim of this paper is to study the influence of locality mechanisms in vision transformers. Transformers originated from machine translation and are particularly good at modelling long-range dependencies within a l...
来源: 评论
Retinal Disorder Diagnosis Based on Hybrid Deep Learning Models
SSRN
收藏 引用
SSRN 2022年
作者: Sedik, Ahmed El-Hag, Noha A. El-Hoseny, Heba M. El-Banby, Ghada M. Khalaf, Ashraf A.M. Abd El-Samie, Fathi E. El-Shafai, Walid Department of the Robotics and Intelligent Machines Faculty of Artificial Intelligence Kafrelsheikh University Egypt Menoufia University Egypt Department of Electronics and Electrical Communication Engineering Al-Obour High Institute for Engineering and Technology Egypt Department of Industrial Electronics and Control Engineering Faculty of Electronic Engineering Menoufia University Menouf32952 Egypt Deptartment of Electronics and Electrical Communication Engineering Faculty of Electronic Engineering Menoufia University Menouf32952 Egypt Department of Information Technology College of Computer and Information Sciences Princess Nourah Bint Abdulrahman University Riyadh84428 Saudi Arabia Security Engineering Lab Computer Science Department Prince Sultan University Riyadh11586 Saudi Arabia
Anomaly detection from medical images is badly needed for automated diagnosis. For example, medical images obtainedwith several modalities such as magnetic resonance (MR) and confocal microscopy need to be classified ... 详细信息
来源: 评论
A robust and interpretable deep learning framework for multi-modal registration via keypoints
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Alan Q. Yu, Evan M. Dalca, Adrian V. Sabuncu, Mert R. School of Electrical and Computer Engineering Cornell University Cornell Tech New YorkNY10044 United States Department of Radiology Weill Cornell Medical School New YorkNY10065 United States Iterative Scopes CambridgeMA02139 United States Computer Science and Artificial Intelligence Lab The Massachusetts Institute of Technology CambridgeMA02139 United States A.A. Martinos Center for Biomedical Imaging The Massachusetts General Hospital CharlestownMA02129 United States
We present KeyMorph, a deep learning-based image registration framework that relies on automatically detecting corresponding keypoints. State-of-the-art deep learning methods for registration often are not robust to l... 详细信息
来源: 评论