咨询与建议

限定检索结果

文献类型

  • 188 篇 期刊文献
  • 129 篇 会议

馆藏范围

  • 317 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 216 篇 工学
    • 154 篇 计算机科学与技术...
    • 136 篇 软件工程
    • 42 篇 生物医学工程(可授...
    • 40 篇 光学工程
    • 40 篇 生物工程
    • 35 篇 信息与通信工程
    • 32 篇 控制科学与工程
    • 27 篇 电气工程
    • 23 篇 电子科学与技术(可...
    • 13 篇 机械工程
    • 11 篇 化学工程与技术
    • 10 篇 仪器科学与技术
    • 9 篇 动力工程及工程热...
    • 9 篇 安全科学与工程
    • 6 篇 交通运输工程
    • 5 篇 材料科学与工程(可...
  • 120 篇 理学
    • 58 篇 数学
    • 43 篇 生物学
    • 36 篇 物理学
    • 20 篇 统计学(可授理学、...
    • 13 篇 系统科学
    • 11 篇 化学
  • 63 篇 管理学
    • 41 篇 管理科学与工程(可...
    • 25 篇 图书情报与档案管...
    • 19 篇 工商管理
  • 33 篇 医学
    • 32 篇 临床医学
    • 27 篇 基础医学(可授医学...
    • 19 篇 药学(可授医学、理...
  • 10 篇 法学
    • 6 篇 社会学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 5 篇 农学
  • 1 篇 教育学
  • 1 篇 文学

主题

  • 13 篇 robot sensing sy...
  • 8 篇 neural networks
  • 8 篇 machine learning
  • 7 篇 intelligent robo...
  • 7 篇 mobile robots
  • 7 篇 semantics
  • 7 篇 accuracy
  • 6 篇 computer archite...
  • 6 篇 wireless sensor ...
  • 6 篇 humans
  • 6 篇 artificial intel...
  • 5 篇 deep learning
  • 5 篇 image segmentati...
  • 5 篇 subspace constra...
  • 5 篇 orbital robotics
  • 5 篇 costs
  • 5 篇 robot kinematics
  • 4 篇 laboratories
  • 4 篇 optimization
  • 4 篇 pattern recognit...

机构

  • 8 篇 distributed inte...
  • 6 篇 university of sc...
  • 6 篇 department of el...
  • 6 篇 department of el...
  • 5 篇 department of en...
  • 5 篇 graduate institu...
  • 5 篇 harbin institute...
  • 4 篇 university of wü...
  • 4 篇 guangdong univer...
  • 4 篇 department of co...
  • 4 篇 centre for medic...
  • 4 篇 department of qu...
  • 4 篇 department of el...
  • 4 篇 heidelberg divis...
  • 4 篇 computer science...
  • 4 篇 department of ra...
  • 4 篇 university of el...
  • 4 篇 nature-inspired ...
  • 4 篇 university of pe...
  • 4 篇 moe key lab of a...

作者

  • 15 篇 lynne e. parker
  • 9 篇 bakas spyridon
  • 8 篇 timofte radu
  • 6 篇 glocker ben
  • 6 篇 kofler florian
  • 6 篇 liu shuo
  • 6 篇 xiao wei
  • 6 篇 sangaiah arun ku...
  • 5 篇 javadpour amir
  • 5 篇 reinke annika
  • 5 篇 azam asilian bid...
  • 5 篇 wang yan
  • 5 篇 menze bjoern
  • 5 篇 dalca adrian v.
  • 5 篇 shahryar rahnama...
  • 4 篇 rajpoot nasir
  • 4 篇 kozubek michal
  • 4 篇 li hongwei bran
  • 4 篇 galdran adrian
  • 4 篇 godau patrick

语言

  • 290 篇 英文
  • 24 篇 其他
  • 3 篇 中文
检索条件"机构=the Distributed Intelligence Lab in the Department of Computer Science and Electrical Engineering"
317 条 记 录,以下是181-190 订阅
排序:
Radiomics-enhanced prediction of Constant-Murley scores following ultrasound-guided percutaneous irrigation of calcific tendinopathy
European Journal of Radiology Artificial Intelligence
收藏 引用
European Journal of Radiology Artificial intelligence 2025年 2卷 100019-100019页
作者: Matthaios Triantafyllou Evangelia E. Vassalou Alexia Maria Goulianou Theodoros H. Tosounidis Kostas Marias Apostolos H. Karantanas Michail E. Klontzas Artificial Intelligence and Translational Imaging (ATI) Lab Department of Radiology School of Medicine University of Crete Voutes Campus Heraklion Greece Department of Medical Imaging University Hospital of Heraklion Heraklion Crete Greece Department of Orthopaedic Surgery University Hospital Heraklion Heraklion Crete 71500 Greece Computational BioMedicine Laboratory Institute of Computer Science Foundation for Research and Technology (FORTH) Heraklion Crete Greece Department of Electrical and Computer Engineering Hellenic Mediterranean University Heraklion Crete Greece Division of Radiology Department for Clinical Science Intervention and Technology (CLINTEC) Karolinska Institutet Stockholm Sweden
Objective Calcific tendinopathy of the rotator cuff presents challenges in symptom management and functional recovery with image-guided treatment. This study aimed to develop a regression model integrating radiomic an... 详细信息
来源: 评论
Minority Oversampling Using Sensitivity
Minority Oversampling Using Sensitivity
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Jianjun Zhang Ting Wang Wing W. Y. Ng Witold Pedrycz Shuai Zhang Chris D. Nugent Guangdong Provincial Key Lab of Computational Intelligence and Cyberspace Information School of Computer Science and Engineering South China University of Technology Guangzhou China Department of Electrical and Computer Engineering University of Alberta Edmonton Canada School of Computing Ulster University Jordanstown United Kingdom
The Synthetic Minority Oversampling Technique (SMOTE) is effective to handle imbalance classification problems. However, the random candidate selection of SMOTE may lead to severe overlap between classes and introduce... 详细信息
来源: 评论
A distributed Multifactorial Particle Swarm Optimization Approach
TechRxiv
收藏 引用
TechRxiv 2021年
作者: Aboud, Ahlem Rokbani, Nizar Mirjalili, Seyedali Qahtani, Abdulrahman M. Almutiry, Omar Dhahri, Habib Alimi, Adel M. University of Sousse ISITCom Sousse4011 Tunisia BP 1173 Sfax3038 Tunisia High Institute of Applied Science and technolgy of Sousse University of Sousse Tunisia Department of Electrical and Electronic Engineering Science Faculty of Engineering and the Built Environment University of Johannesburg South Africa Centre for Artificial Intelligence Research and Optimisation Torrens University Australia Brisbane Australia Yonsei Frontier Lab Yonsei University Korea Republic of Department of Computer Science College of Computers and Information Technology Taif University P.O.Box. 11099 Taif21944 Saudi Arabia College of Applied Computer Science King Saud University Riyadh Saudi Arabia
Multifactorial Optimization (MFO) and Evolutionary Transfer Optimization (ETO) are new optimization challenging paradigms for which the multi-Objective Particle Swarm Optimization system (MOPSO) may be interesting des... 详细信息
来源: 评论
Perturbations and Phase Transitions in Swarm Optimization Algorithms
arXiv
收藏 引用
arXiv 2025年
作者: Vantuch, Tomáš Zelinka, Ivan Adamatzky, Andrew Marwan, Norbert Center ENET Technical University of Ostrava Czech Republic Modeling Evolutionary Algorithms Simulation and Artificial Intelligence Faculty of Electrical & Electronics Engineering Ton Duc Thang University Ho Chi Minh City Viet Nam Department of Computer Science Technical University of Ostrava Czech Republic Unconventional Computing Lab UWE Bristol United Kingdom Leibniz Association Potsdam Germany
Natural systems often exhibit chaotic behavior in their space-time evolution. Systems transiting between chaos and order manifest a potential to compute, as shown with cellular automata and artificial neural networks.... 详细信息
来源: 评论
Nearest neighborhood-based deep clustering for source data-absent unsupervised domain adaptation
arXiv
收藏 引用
arXiv 2021年
作者: Tang, Song Yang, Yan Ma, Zhiyuan Hendrich, Norman Zeng, Fanyu Ge, Shuzhi Sam Zhang, Changshui Zhang, Jianwei The Institute of Machine Intelligence University of Shanghai for Science and Technology Shanghai China The State Key Laboratory of Electronic Thin Films and Integrated Devices University of Electronic Science and Technology of China Chengdu China Group Department of Informatics Universität Hamburg Hamburg Germany The Institute of Machine Intelligence University of Shanghai for Science and Technology Shanghai China The State Key Lab. for Novel Software Technology Nanjing University Nanjing China The Engineering Research Center of Wideband Wireless Communication Technology Ministry of Education Nanjing University of Posts and Telecommunications Nanjing China The Department of Electrical and Computer Engineering National University of Singapore Singapore Singapore The Department of Automation Tsinghua University Beijing China
In the classic setting of unsupervised domain adaptation (UDA), the labeled source data are available in the training phase. However, in many real-world scenarios, owing to some reasons such as privacy protection and ... 详细信息
来源: 评论
Erratum to: Large circuit models: opportunities and challenges
收藏 引用
science CHINA Information sciences 2024年 第11期67卷 1-1页
作者: Lei CHEN Yiqi CHEN Zhufei CHU Wenji FANG Tsung-Yi HO Ru HUANG Yu HUANG Sadaf KHAN Min LI Xingquan LI Yu LI Yun LIANG Jinwei LIU Yi LIU Yibo LIN Guojie LUO Hongyang PAN Zhengyuan SHI Guangyu SUN Dimitrios TSARAS Runsheng WANG Ziyi WANG Xinming WEI Zhiyao XIE Qiang XU Chenhao XUE Junchi YAN Jun YANG Bei YU Mingxuan YUAN Evangeline F.Y. YOUNG Xuan ZENG Haoyi ZHANG Zuodong ZHANG Yuxiang ZHAO Hui-Ling ZHEN Ziyang ZHENG Binwu ZHU Keren ZHU Sunan ZOU Huawei Noah's Ark Lab Hong Kong 999077 China School of Integrated Circuits Peking University Beijing 100871 China Faculty of Electrical Engineering and Computer Science Ningbo University Ningbo 315211 China Department of Electronic and Computer Engineering Hong Kong University of Science and Technology Hong Kong 999077 China Department of Computer Science and Engineering The Chinese University of Hong Kong Hong Kong 999077 China School of Integrated Circuits Southeast University Nanjing 210096 China Huawei HiSilicon Shenzhen 518129 China Peng Cheng Laboratory Shenzhen 518052 China School of Computer Science Peking University Beijing 100871 China School of Microelectronics State Key Laboratory of Integrated Chips and System Fudan University Shanghai 200433 China School of Artificial Intelligence Shanghai Jiao Tong University Shanghai 200240 China
来源: 评论
NTIRE 2022 Challenge on Stereo Image Super-Resolution: Methods and Results
arXiv
收藏 引用
arXiv 2022年
作者: Guo, Yulan Wang, Longguang Wang, Yingqian Li, Juncheng Gu, Shuhang Timofte, Radu Chen, Liangyu Chu, Xiaojie Yu, Wenqing Jin, Kai Wei, Zeqiang Guo, Sha Yang, Angulia Zhou, Xiuzhuang Guo, Guodong Xiao, Huaxin Yan, Shen Liu, Yuxiang Cai, Hanxiao Dai, Bin Peng, Feiyue Cao, Pu Nie, Yang Yang, Lu Song, Qing Hu, Xiaotao Xu, Jun Xu, Mai Jing, Junpeng Deng, Xin Xing, Qunliang Qiao, Minglang Guan, Zhenyu Guo, Wenlong Peng, Chenxu Chen, Zan Chen, Junyang Li, Hao Chen, Junbin Li, Weijie Yang, Zhijing Li, Gen Li, Aijin Sun, Lei Zhang, Dafeng Liu, Shizhuo Zhang, Jiangtao Qu, Yanyun Yang, Hao-Hsiang Huang, Zhi-Kai Chen, Wei-Ting Chang, Hua-En Kuo, Sy-Yen Liang, Qiaohui Lin, Jianxin Wang, Yijun Yin, Lianying Zhang, Rongju Zhao, Wei Xiao, Peng Xu, Rongjian Zhang, Zhilu Zuo, Wangmeng Guo, Hansheng Gao, Guangwei Zeng, Tieyong Kim, Joohyeok Kim, HyeonA Park, Eunpil Sim, Jae-Young Pi, Huicheng Zhang, Shunli Zhai, Jucai Zeng, Pengcheng Liu, Yang Ma, Chihao Huang, Yulin Chen, Junying National University of Defense Technology China The Chinese University of Hong Kong Hong Kong The University of Sydney Australia University of Würzburg ETH Zürich Switzerland MEGVII Technology China Peking University China Bigo Technology Pte. Ltd Singapore Smart Healthcare Innovation Lab Beijing University of Posts and Telecommunications China School of Artificial Intelligence Beijing University of Posts and Telecommunications China Head of Institute of Deep Learning Baidu Research College of Systems Engineering National University of Defense Technology China College of Liberal Arts and Sciences National University of Defense Technology China Pattern Recognition and Intelligent Vision Lab Beijing University of Posts and Telecommunications China College of Computer Science Nankai University Tianjin China School of Statistics and Data Science Nankai University Tianjin Singapore Beihang University China Zhejiang University of Technology China Guangdong University of Technology China Tencent OVBU SRC-B Xiamen University China Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Electronics Engineering National Taiwan University Taiwan College of Computer Science and Electronic Engineering Hunan University China Harbin Institude of Technology China The Chinese University of Hong Kong Hong Kong Nanjing University of Posts and Telecommunications China Department of Electrical Engineering Ulsan National Institute of Science and Technology Korea Republic of Graduate School of Artificial Intelligence Ulsan National Institute of Science and Technology Korea Republic of Beijing Jiaotong University China City University of Hong Kong Hong Kong South China University of Technology China
In this paper, we summarize the 1st NTIRE challenge on stereo image super-resolution (restoration of rich details in a pair of low-resolution stereo images) with a focus on new solutions and results. This challenge ha... 详细信息
来源: 评论
The state-of-the-art in Cardiac MRI Reconstruction: Results of the CMRxRecon Challenge in MICCAI 2023
arXiv
收藏 引用
arXiv 2024年
作者: Lyu, Jun Qin, Chen Wang, Shuo Wang, Fanwen Li, Yan Wang, Zi Guo, Kunyuan Ouyang, Cheng Tänzer, Michael Liu, Meng Sun, Longyu Sun, Mengting Li, Qin Shi, Zhang Hua, Sha Li, Hao Chen, Zhensen Zhang, Zhenlin Xin, Bingyu Metaxas, Dimitris N. Yiasemis, George Teuwen, Jonas Zhang, Liping Chen, Weitian Pang, Yanwei Liu, Xiaohan Razumov, Artem Dylov, Dmitry V. Dou, Quan Yan, Kang Xue, Yuyang Du, Yuning Dietlmeier, Julia Garcia-Cabrera, Carles Hemidi, Ziad Al-Haj Vogt, Nora Xu, Ziqiang Zhang, Yajing Chu, Ying-Hua Chen, Weibo Bai, Wenjia Zhuang, Xiahai Qin, Jing Wu, Lianmin Yang, Guang Qu, Xiaobo Wang, He Wang, Chengyan Psychiatry Neuroimaging Laboratory Brigham and Women’s Hospital Harvard Medical School 399 Revolution Drive BostonMA02215 United States Department of Electrical and Electronic Engineering & I-X Imperial College London United Kingdom Digital Medical Research Center School of Basic Medical Sciences Fudan University Shanghai China Department of Bioengineering & I-X Imperial College London LondonW12 7SL United Kingdom Cardiovascular Magnetic Resonance Unit Royal Brompton Hospital Guy’s and St Thomas’ NHS Foundation Trust LondonSW3 6NP United Kingdom Department of Radiology Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China Department of Electronic Science Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance National Institute for Data Science in Health and Medicine Institute of Artificial Intelligence Xiamen University Xiamen361102 China Department of Computing Department of Brain Sciences Imperial College London LondonSW7 2AZ United Kingdom Human Phenome Institute Fudan University 825 Zhangheng Road Pudong New District Shanghai201203 China Department of Radiology Zhongshan Hospital Fudan University Shanghai China Department of Cardiovascular Medicine Ruijin Hospital Lu Wan Branch Shanghai Jiao Tong University School of Medicine Shanghai China Institute of Science and Technology for Brain-Inspired Intelligence Fudan University Shanghai200433 China Department of Computer Science Rutgers University PiscatawayNJ08854 United States AI for Oncology Netherlands Cancer Institute Plesmanlaan 121 Amsterdam1066 CX Netherlands Department of Imaging and Interventional Radiology The Chinese University of Hong Kong Hong Kong TJK-BIIT Lab School of Electrical and Information Engineering Tianjin University Tianjin300072 China Skolkovo Institute Of Science And Technology Center for Artificial Intelligence Technology 30/1 Bolshoy blvd. Moscow121205 Russia Department of Biomedical Engineering University of Virginia
Cardiac magnetic resonance imaging (MRI) provides detailed and quantitative evaluation of the heart’s structure, function, and tissue characteristics with high-resolution spatial-temporal imaging. However, its slow i... 详细信息
来源: 评论
When counterpoint meets chinese folk melodies  20
When counterpoint meets chinese folk melodies
收藏 引用
Proceedings of the 34th International Conference on Neural Information Processing Systems
作者: Nan Jiang Sheng Jin Zhiyao Duan Changshui Zhang Institute for Artificial Intelligence Tsinghua University (THUAI) and State Key Lab of Intelligent Technologies and Systems and Beijing National Research Center for Information Science and Technology (BNRist) and Department of Automation Tsinghua University Beijing China Department of Electrical and Computer Engineering University of Rochester
Counterpoint is an important concept in Western music theory. In the past century, there have been significant interests in incorporating counterpoint into Chinese folk music composition. In this paper, we propose a r...
来源: 评论
Multi-stage Speaker Extraction with Utterance and Frame-Level Reference Signals
arXiv
收藏 引用
arXiv 2020年
作者: Ge, Meng Xu, Chenglin Wang, Longbiao Chng, Eng Siong Dang, Jianwu Li, Haizhou Tianjin Key Laboratory of Cognitive Computing and Application College of Intelligence and Computing Tianjin University Tianjin China School of Computer Science and Engineering Nanyang Technological University Singapore Japan Advanced Institute of Science and Technology Ishikawa Japan Department of Electrical and Computer Engineering National University of Singapore Singapore Machine Listening Lab University of Bremen Germany
Speaker extraction requires a sample speech from the target speaker as the reference. However, enrolling a speaker with a long speech is not practical. We propose a speaker extraction technique, that performs in multi... 详细信息
来源: 评论