咨询与建议

限定检索结果

文献类型

  • 163 篇 会议
  • 18 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 186 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 104 篇 工学
    • 68 篇 计算机科学与技术...
    • 58 篇 软件工程
    • 27 篇 信息与通信工程
    • 22 篇 光学工程
    • 19 篇 控制科学与工程
    • 15 篇 机械工程
    • 11 篇 电气工程
    • 9 篇 交通运输工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 生物工程
    • 6 篇 化学工程与技术
    • 5 篇 电子科学与技术(可...
    • 4 篇 土木工程
    • 3 篇 仪器科学与技术
    • 3 篇 建筑学
    • 3 篇 航空宇航科学与技...
    • 1 篇 材料科学与工程(可...
    • 1 篇 冶金工程
    • 1 篇 动力工程及工程热...
  • 63 篇 理学
    • 47 篇 数学
    • 20 篇 物理学
    • 10 篇 统计学(可授理学、...
    • 9 篇 生物学
    • 3 篇 化学
    • 3 篇 系统科学
    • 1 篇 大气科学
  • 17 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 10 篇 图书情报与档案管...
    • 2 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学

主题

  • 47 篇 pattern recognit...
  • 34 篇 image processing
  • 26 篇 image segmentati...
  • 17 篇 shape
  • 16 篇 automation
  • 15 篇 computer vision
  • 15 篇 image reconstruc...
  • 13 篇 image analysis
  • 12 篇 cameras
  • 8 篇 ceramics
  • 7 篇 mobile robots
  • 7 篇 computer graphic...
  • 7 篇 feature extracti...
  • 7 篇 robustness
  • 6 篇 robot sensing sy...
  • 6 篇 visualization
  • 6 篇 biomedical imagi...
  • 6 篇 image color anal...
  • 6 篇 pattern analysis
  • 6 篇 principal compon...

机构

  • 21 篇 pattern recognit...
  • 15 篇 pattern recognit...
  • 9 篇 pattern recognit...
  • 6 篇 institute for co...
  • 6 篇 institute of com...
  • 5 篇 image processing...
  • 5 篇 faculty of compu...
  • 4 篇 institute of com...
  • 4 篇 pattern recognit...
  • 4 篇 vienna universit...
  • 4 篇 institute for co...
  • 4 篇 pattern recognit...
  • 4 篇 pattern recognit...
  • 3 篇 institute for co...
  • 3 篇 pattern recognit...
  • 3 篇 pattern recognit...
  • 3 篇 the institute of...
  • 3 篇 image processing...
  • 2 篇 pattern recognit...
  • 2 篇 computational vi...

作者

  • 29 篇 kropatsch walter...
  • 15 篇 r. sablatnig
  • 15 篇 sablatnig robert
  • 12 篇 m. kampel
  • 12 篇 robert sablatnig
  • 11 篇 h. bischof
  • 11 篇 bischof horst
  • 11 篇 sergiu nedevschi
  • 10 篇 haxhimusa yll
  • 9 篇 kampel martin
  • 8 篇 walter g. kropat...
  • 6 篇 kampel m.
  • 5 篇 menard christian
  • 5 篇 g. langs
  • 5 篇 langs georg
  • 4 篇 glantz roland
  • 4 篇 walter kropatsch
  • 4 篇 thirde david
  • 4 篇 ion adrian
  • 4 篇 lettner martin

语言

  • 183 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"机构=the Image Processing and Pattern Recognition Group"
186 条 记 录,以下是151-160 订阅
Head detection and localization from sparse 3D data
Head detection and localization from sparse 3D data
收藏 引用
24th German Association for pattern recognition Symposium, DAGM 2002
作者: Clabian, Markus Rötzer, Harald Bischof, Horst Kropatsch, Walter Advanced Computer Vision GmbH Donau City Str.1 ViennaA-1220 Austria Institute for Computer Graphics and Vision Graz University of Technology Inffeldgasse 16 GrazA-8010 Austria Pattern Recognition and Image Processing Group Institute of Computer Aided Automation Computer Science Department Vienna University of Technology Favoritenstr. 9 ViennaA-1040 Austria
Head detection is an important, but difficult task, if no restrictions such as static illumination, frontal face appearance or uniform background can be assumed. We present a system that is able to perform head detect... 详细信息
来源: 评论
Active Feature Models
Active Feature Models
收藏 引用
International Conference on pattern recognition
作者: G. Langs P. Peloschek R. Donner M. Reiter H. Bischof Institute for Computer Graphics and Vision Graz University of Technology Austria Pattern Recognition and Image Processing Group University of Technology Vienna Austria Department of Radiology Medical University of Vienna Austria
In this paper active feature models are proposed. They utilize local texture features and a statistical shape model for the reliable localization of landmarks in images. They are related to active appearance models, b... 详细信息
来源: 评论
Sampling step importance in hierarchical semantic segmentation of microscopic images
Sampling step importance in hierarchical semantic segmentati...
收藏 引用
International Conference on System Theory, Control, and Computing (ICSTCC)
作者: Cristian Smochina Vasile Manta Walter Kropatsch Department of Computer Science and Engineering Gheorghe Asachi Technical University of Iasi Romania Pattern Recognition and Image Processing Group Institute of Computer Graphics and Algorithms Vienna University of Technology Austria
The objective of semantic segmentation in microscopic images is to extract the cellular, nuclear or tissue components. This problem is challenging due to the large variations of these components features (size, shape,... 详细信息
来源: 评论
Robust real-time tracking for visual surveillance
Eurasip Journal on Advances in Signal Processing
收藏 引用
Eurasip Journal on Advances in Signal processing 2007年 2007卷
作者: Thirde, David Borg, Mark Aguilera, Josep Wildenauer, Horst Ferryman, James Kampel, Martin School of Systems Engineering Computational Vision Group University of Reading Reading RG6 6AY United Kingdom Computer Science Department Pattern Recognition and Image Processing Group Vienna University of Technology Vienna 1040 Austria
This paper describes a real-time multi-camera surveillance system that can be applied to a range of application domains. This integrated system is designed to observe crowded scenes and has mechanisms to improve track... 详细信息
来源: 评论
Automatic Surveying of Cutaneous Hemangiomas
Automatic Surveying of Cutaneous Hemangiomas
收藏 引用
International Conference on pattern recognition
作者: S. Zambanini G. Langs R. Sablatnig P. Donath H. Maier Pattern Recognition and Image Processing Group University of Technology Vienna Austria Institute for Computer Graphics and Vision Graz University of Technology Austria Division of Special and Environmental Dermatologyy Medical University of Vienna Austria
This paper presents a method for the fully automatic surveying of cutaneous hemangiomas by means of a hemangioma segmentation and a ruler visible in the images. The algorithm computes the spatial resolution of an imag... 详细信息
来源: 评论
Multi-label image segmentation via max-sum solver
Multi-label image segmentation via max-sum solver
收藏 引用
Conference on Computer Vision and pattern recognition (CVPR)
作者: Banislav Micusik Tomas Pajdla Pattern Recognition and Image Processing Group Inst. of Computer Aided Automation University of Technology Vienna Austria Center for Machine Perception Dpt. of Cybernetics Czech Technical University Czech Republic
We formulate single-image multi-label segmentation into regions coherent in texture and color as a MAX-SUM problem for which efficient linear programming based solvers have recently appeared. By handling more than two... 详细信息
来源: 评论
Hierarchical matching of panoramic images
Hierarchical matching of panoramic images
收藏 引用
International Conference on image Analysis and processing
作者: R. Glantz M. Pelillo W.G. Kropatsch Dipartimento di Informatica Università Ca Foscari di Venezia Venezia-Mestre Italy Pattern Recognition and Image Processing Group Institute of Computer Aided Automation University of Technology Vienna Vienna Austria
When matching regions from "similar" images, one typically has the problem of missing counterparts due to local or even global variations of segmentation fineness. Matching segmentation hierarchies, however,... 详细信息
来源: 评论
A novel video object tracking approach using bidirectional projection
收藏 引用
Chinese Optics Letters 2004年 第7期2卷 390-392页
作者: 刘志 杨杰 Institute of Image Processing and Pattern Recognition Shanghai Jiaotong University Shanghai 200030 Institute of Image Processing and Pattern Recognition Shanghai Jiaotong University Shanghai 200030his paper proposes a novel video object tracking approach using birdirectional projection. Forward projection is exploited to locate the current video object with rough boundary information. Watershed segmentation is applied to the simplified gradient image of the current frame to obtain a reasonable partition. An improved backward projection which incorporates pixel classification with region classification is performed on some segmented regions in a rather small search range and the tracking performance is enhanced in respect to both reliability and efficiency. Experimental results for various types of the MPEG-4 (moving picture experts group) test sequences demonstrate an efficient and faithful segmentation performance of the proposed approach.
This paper proposes a novel video object tracking approach using birdirectional projection. Forward projection is exploited to locate the current video object with rough boundary information. Watershed segmentation is... 详细信息
来源: 评论
Mobile robot localization under varying illumination
Mobile robot localization under varying illumination
收藏 引用
作者: Jogan, Matjaž Leonardis, Aleš Wildenauer, Horst Bischof, Horst Faculty of Computer and Information Science University of Ljubljana Tržaška 25 1001 Ljubljana Slovenia Pattern Recognition and Image Processing Group Institute for Computer Aided Automation Vienna University of Technology Favoritenstrasse 9/1832 A-1040 Vienna Austria Institute for Computer Graphics and Vision Graz University of Technology Inffeldgasse 16 2. OG A-8010 Graz Austria
Methods for mobile robot localization that use eigenspaces of panoramic snapshots of the environment are in general sensitive to changes in the illumination of the environment. Therefore, we propose an approach which ... 详细信息
来源: 评论
Optimal sub-shape models by minimum description length
Optimal sub-shape models by minimum description length
收藏 引用
Conference on Computer Vision and pattern recognition (CVPR)
作者: G. Langs P. Peloschek H. Bischof Institute for Computer Graphics and Vision Graz University of Technology Graz Austria Pattern Recognition and Image Processing Group University of Technology Vienna Vienna Austria Department of Clinical Radiology Vienna Medical University Vienna Austria
Active shape models are powerful and widely used tool to interpret complex image data. By building models of shape variation they enable search algorithms to use a priori knowledge in an efficient and gainful way. How... 详细信息
来源: 评论