咨询与建议

限定检索结果

文献类型

  • 357 篇 会议
  • 159 篇 期刊文献

馆藏范围

  • 516 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 322 篇 工学
    • 201 篇 计算机科学与技术...
    • 177 篇 软件工程
    • 83 篇 信息与通信工程
    • 59 篇 控制科学与工程
    • 58 篇 光学工程
    • 42 篇 生物医学工程(可授...
    • 41 篇 电子科学与技术(可...
    • 37 篇 生物工程
    • 32 篇 机械工程
    • 30 篇 电气工程
    • 23 篇 化学工程与技术
    • 17 篇 仪器科学与技术
    • 10 篇 交通运输工程
    • 9 篇 力学(可授工学、理...
    • 8 篇 建筑学
    • 8 篇 土木工程
    • 8 篇 航空宇航科学与技...
  • 201 篇 理学
    • 113 篇 数学
    • 75 篇 物理学
    • 46 篇 生物学
    • 42 篇 统计学(可授理学、...
    • 23 篇 化学
    • 15 篇 系统科学
  • 73 篇 管理学
    • 44 篇 管理科学与工程(可...
    • 36 篇 图书情报与档案管...
    • 8 篇 工商管理
  • 27 篇 医学
    • 23 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 15 篇 药学(可授医学、理...
  • 6 篇 艺术学
    • 6 篇 设计学(可授艺术学...
  • 5 篇 经济学
  • 4 篇 法学
  • 3 篇 教育学
  • 3 篇 农学
  • 3 篇 军事学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 45 篇 feature extracti...
  • 39 篇 image processing
  • 37 篇 pattern recognit...
  • 31 篇 image segmentati...
  • 20 篇 support vector m...
  • 18 篇 laboratories
  • 16 篇 computer vision
  • 16 篇 training
  • 15 篇 object detection
  • 15 篇 principal compon...
  • 14 篇 image analysis
  • 13 篇 histograms
  • 13 篇 image reconstruc...
  • 13 篇 shape
  • 12 篇 robustness
  • 11 篇 neural networks
  • 11 篇 discrete wavelet...
  • 11 篇 convolution
  • 11 篇 kernel
  • 11 篇 artificial intel...

机构

  • 74 篇 image processing...
  • 34 篇 institute of ima...
  • 21 篇 school of inform...
  • 17 篇 key laboratory o...
  • 15 篇 institute for pa...
  • 15 篇 school of softwa...
  • 13 篇 school of comput...
  • 12 篇 key laboratory o...
  • 10 篇 key laboratory o...
  • 9 篇 institute of ima...
  • 9 篇 laboratory of im...
  • 8 篇 key laboratory o...
  • 7 篇 institute of pat...
  • 7 篇 institute of ima...
  • 6 篇 pattern recognit...
  • 6 篇 institute of ima...
  • 6 篇 state education ...
  • 6 篇 institute of ima...
  • 5 篇 university of ch...
  • 5 篇 school of mathem...

作者

  • 64 篇 ping guo
  • 34 篇 yang jie
  • 27 篇 guo ping
  • 25 篇 qian yin
  • 23 篇 huang xiaolin
  • 18 篇 jie yang
  • 14 篇 liu jian
  • 12 篇 ding mingyue
  • 12 篇 zhang tianxu
  • 12 篇 li qishen
  • 12 篇 jian liu
  • 12 篇 shen hong-bin
  • 10 篇 he fan
  • 10 篇 qishen li
  • 9 篇 xin zheng
  • 9 篇 fang tao
  • 9 篇 yang yang
  • 9 篇 tian jinwen
  • 9 篇 hong-bin shen
  • 9 篇 yin qian

语言

  • 492 篇 英文
  • 16 篇 中文
  • 8 篇 其他
检索条件"机构=the Image Processing and Pattern Recognition Laboratory"
516 条 记 录,以下是151-160 订阅
排序:
Sparse generalized canonical correlation analysis: Distributed alternating iteration based approach
arXiv
收藏 引用
arXiv 2020年
作者: Cai, Jia Lv, Kexin Huo, Junyi Huang, Xiaolin Yang, Jie School of Statistics and Mathematics Guangdong University of Finance & Economics Big Data and Educational Statistics Application Laboratory 21 Chisha Road Guangzhou Guangdong510320 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University MOE Key Laboratory of System Control and Information Processing 800 Dongchuan Road Shanghai200240 China School of Electronics and Computer Science University of Southampton University Road SouthamptonSO17 1BJ United Kingdom
Sparse canonical correlation analysis (CCA) is a useful statistical tool to detect latent information with sparse structures. However, sparse CCA works only for two datasets, i.e., there are only two views or two dist... 详细信息
来源: 评论
Dysfunction and recovery of the cortical connectome gradient and its association with gene expression profiles in methamphetamine and heroin use disorders
收藏 引用
Progress in Neuro-Psychopharmacology and Biological Psychiatry 2025年 139卷 111391页
作者: Du, Zhe Yang, Wenhan Wen, Xinwen Cai, Suping Liu, Jun Yuan, Kai School of Life Science and Technology Xidian University Shaanxi Xi'an 710126 China Department of Radiology Second Xiangya Hospital Central South University Changsha 410011 China Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing School of Information Engineering Inner Mongolia University of Science and Technology Inner Mongolia Baotou 014010 China Engineering Research Center of Molecular and Neuro Imaging Ministry of Education Shaanxi Xi'an China Ganzhou City Key Laboratory of Mental Health The Third People's Hospital of Ganzhou City Jiangxi Ganzhou 341000 China Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information School of Life Science and Technology Xidian University Shaanxi Xi'an 710126 China
Background: The hierarchy and segregation of community-based brain networks can be characterized by functional connectome gradient (FCG). Whether the cortical FCG was disrupted and could even be reversed after prolong... 详细信息
来源: 评论
Learning data-adaptive non-parametric kernels
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 8590-8628页
作者: Fanghui Liu Xiaolin Huang Chen Gong Jie Yang Li Li Department of Electrical Engineering ESAT-STADIUS KU Leuven Belgium Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology China and Department of Computing Hong Kong Polytechnic University Hong Kong SAR China Department of Automation BNRist Tsinghua University China
In this paper, we propose a data-adaptive non-parametric kernel learning framework in margin based kernel methods. In model formulation, given an initial kernel matrix, a data-adaptive matrix with two constraints is i... 详细信息
来源: 评论
Current Progress and Challenges in Large-scale 3D Mitochondria Instance Segmentation
TechRxiv
收藏 引用
TechRxiv 2023年
作者: Franco-Barranco, Daniel Lin, Zudi Jang, Won-Dong Wang, Xueying Shen, Qijia Yin, Wenjie Fan, Yutian Li, Mingxing Chen, Chang Xiong, Zhiwei Xin, Rui Liu, Hao Chen, Huai Li, Zhili Zhao, Jie Chen, Xuejin Pape, Constantin Conrad, Ryan De Folter, Jozefus Nightingale, Luke Jones, Martin L. Liu, Yanling Ziaei, Dorsa Huschauer, Stephan Arganda-Carreras, Ignacio Pfister, Hanspeter Wei, Donglai The Department of Computer Science and Artificial Intelligence University of the Basque Country Donostia-San Sebastian Spain San Sebastian Spain Ikerbasque Basque Foundation for Science Bilbao Spain Biofisika Institute CSIC UPV/EHU Bilbao Spain Harvard University All-ston MA United States The Department of Molecular and Cellular Biology Harvard University CambridgeMA United States The Wellcome Centre for Integrative Neuroimaging FMRIB Nuffield Department of Clinical Neurosciences University of Oxford Oxford United Kingdom University of Science and Technology of China Anhui China The Institute of Image Processing and Pattern Recognition Department of Automation Shanghai Jiao Tong University Shanghai China The National Engineering Laboratory for Brain-inspired Intelligence Technology and Application University of Science and Technology of China Anhui China The Georg-August University Goettingen Germany The Center for Molecular Microscopy Center for Cancer Research National Cancer Institute National Institutes of Health Bethesda United States The Cancer Research Technology Program Frederick National Laboratory for Cancer Research Frederick United States The Francis Crick Institute London United Kingdom The Advanced Biomedical Computational Science Group Frederick National Laboratory for Cancer Research FrederickMD United States The Computer Science Department Boston College Chestnut Hill MA United States
In this paper, we present the results of the MitoEM challenge on mitochondria 3D instance segmentation from electron microscopy images, organized in conjunction with the IEEE-ISBI 2021 conference. Our benchmark datase... 详细信息
来源: 评论
Prediction of σ54 promoters in prokaryotes based on SVM–Adaboost
Prediction of σ54 promoters in prokaryotes based on SVM–Ad...
收藏 引用
Chinese Automation Congress (CAC)
作者: Yongxian Fan Qingqi Zhu Chengwei Lv Xianyong Pan School of Computer and Information Security Guilin University of Electronic Technology Guilin Guangxi Key Laboratory of System Control and Information Processing Ministry of Education of China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China
σ 54 promoters are responsible for transcriptional carbon and nitrogen in prokaryotes. However, it is costly and difficult by experimental identification of them, especially in the postgenomic era with avalanche of ... 详细信息
来源: 评论
Automatic Monitoring of Driver's Physiological Parameters Based on Microarray Camera
Automatic Monitoring of Driver's Physiological Parameters Ba...
收藏 引用
IEEE Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS)
作者: Jiancheng Zou Zhengzheng Li Peizhou Yan Institute of Image Processing and Pattern Recognition North China University of Technology Beijing Key Laboratory of Urban Rod Traffic Intelligent Control Technology North China University of Technology Shijingshan District Beijing China
Driver's physical and mental states are very important factors affecting the driving states. Traffic accidents are occurred by accompanying abnormal physiological parameters. So how to monitor automatically driver... 详细信息
来源: 评论
A Hierarchical Model with Pseudoinverse Learning Algorithm Optimazation for Pulsar Candidate Selection
A Hierarchical Model with Pseudoinverse Learning Algorithm O...
收藏 引用
Congress on Evolutionary Computation
作者: Shijia Li Sibo Feng Ping Guo Qian Yin Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing China
Pulsars search has always been one of the most concerned problem in the field of astronomy. Nowadays, with the development of astronomical instruments and observation technology, the amount of data is getting bigger a... 详细信息
来源: 评论
Learning tubule-sensitive CNNs for pulmonary airway and artery-vein segmentation in CT
arXiv
收藏 引用
arXiv 2020年
作者: Qin, Yulei Zheng, Hao Gu, Yun Huang, Xiaolin Yang, Jie Wang, Lihui Yao, Feng Zhu, Yue-Min Yang, Guang-Zhong Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province School of Computer Science and Technology Guizhou University Guiyang China Department of Thoracic Surgery Shanghai Chest Hospital Shanghai Jiao Tong University Shanghai China Université de Lyon INSA Lyon CREATIS CNRS INSERM UMR 5220 VilleurbanneU1206 France Institute of Medical Robotics School of Biomedical Engineering Shanghai Jiao Tong University Shanghai China
Training convolutional neural networks (CNNs) for segmentation of pulmonary airway, artery, and vein is challenging due to sparse supervisory signals caused by the severe class imbalance between tubular targets and ba... 详细信息
来源: 评论
AIM 2020 Challenge on image Extreme Inpainting  16th
AIM 2020 Challenge on Image Extreme Inpainting
收藏 引用
Workshops held at the 16th European Conference on Computer Vision, ECCV 2020
作者: Ntavelis, Evangelos Romero, Andrés Bigdeli, Siavash Timofte, Radu Hui, Zheng Wang, Xiumei Gao, Xinbo Shin, Chajin Kim, Taeoh Son, Hanbin Lee, Sangyoun Li, Chao Li, Fu He, Dongliang Wen, Shilei Ding, Errui Bai, Mengmeng Li, Shuchen Zeng, Yu Lin, Zhe Yang, Jimei Zhang, Jianming Shechtman, Eli Lu, Huchuan Zeng, Weijian Ni, Haopeng Cai, Yiyang Li, Chenghua Xu, Dejia Wu, Haoning Han, Yu Nadim, Uddin S. M. Jang, Hae Woong Ahmed, Soikat Hasan Yoon, Jungmin Jung, Yong Ju Li, Chu-Tak Liu, Zhi-Song Wang, Li-Wen Siu, Wan-Chi Lun, Daniel P. K. Suin, Maitreya Purohit, Kuldeep Rajagopalan, A.N. Narang, Pratik Mandal, Murari Chauhan, Pranjal Singh Computer Vision Lab ETH Zürich Zürich Switzerland CSEM Neuchâtel Switzerland School of Electronic Engineering Xidian University Xi’an China Image and Video Pattern Recognition Laboratory School of Electrical and Electronic Engineering Yonsei University Seoul Korea Republic of Baidu Inc. Beijing China Beijing China Dalian University of Technology Dalian China Adobe San Jose United States Rensselaer Polytechnic Institute Troy United States Peking University Beijing China Lab Gachon University Seongnam Korea Republic of Centre for Multimedia Signal Processing Department of Electronic and Information Engineering The Hong Kong Polytechnic University Hong Kong China Indian Institute of Technology Madras Chennai India BITS Pilani Pilani India MNIT Jaipur Jaipur India
This paper reviews the AIM 2020 challenge on extreme image inpainting. This report focuses on proposed solutions and results for two different tracks on extreme image inpainting: classical image inpainting and semanti... 详细信息
来源: 评论
Pulsar candidate selection using ensemble networks for FAST drift-scan survey
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Hongfeng Zhu, Weiwei Guo, Ping Li, Di Feng, Sibo Yin, Qian Miao, Chenchen Tao, Zhenzhao Pan, Zhichen Wang, Pei Zheng, Xin Deng, Xiaodan Liu, Zhijie Xie, Xiaoyao Yu, Xuhong You, Shanping Zhang, Hui Image Processing and Pattern Recognition Laboratory College of Information Science and Technology Beijing Normal University Beijing100875 China CAS Key Laboratory of FAST Chinese Academy of Science Beijing100101 China School of Information Management Dezhou University Dezhou253023 China Image Processing and Pattern Recognition Laboratory School of Systems Science Beijing Normal University Beijing100875 China University of Chinese Academy of Sciences Beijing100049 China Key Laboratory of Information and Computing Science Guizhou Province Guizhou Normal University Guiyang550001 China School of Physics and Electronic Science Guizhou Normal University Guiyang550001 China
The Commensal Radio Astronomy Five-hundred-meter Aperture Spherical radio Telescope (FAST) Survey (CRAFTS) utilizes the novel drift-scan commensal survey mode of FAST and can generate billions of pulsar candidate sign... 详细信息
来源: 评论