咨询与建议

限定检索结果

文献类型

  • 299 篇 会议
  • 201 篇 期刊文献

馆藏范围

  • 500 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 353 篇 工学
    • 230 篇 计算机科学与技术...
    • 199 篇 软件工程
    • 95 篇 信息与通信工程
    • 67 篇 光学工程
    • 48 篇 生物工程
    • 41 篇 控制科学与工程
    • 40 篇 生物医学工程(可授...
    • 34 篇 电子科学与技术(可...
    • 33 篇 机械工程
    • 25 篇 电气工程
    • 22 篇 化学工程与技术
    • 14 篇 仪器科学与技术
    • 13 篇 航空宇航科学与技...
    • 12 篇 土木工程
    • 10 篇 建筑学
    • 10 篇 交通运输工程
    • 9 篇 材料科学与工程(可...
    • 6 篇 力学(可授工学、理...
  • 222 篇 理学
    • 120 篇 数学
    • 76 篇 物理学
    • 58 篇 生物学
    • 40 篇 统计学(可授理学、...
    • 19 篇 化学
    • 13 篇 系统科学
  • 72 篇 管理学
    • 38 篇 管理科学与工程(可...
    • 35 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 25 篇 医学
    • 21 篇 临床医学
    • 16 篇 基础医学(可授医学...
    • 14 篇 药学(可授医学、理...
  • 7 篇 法学
  • 5 篇 经济学
  • 5 篇 农学
  • 4 篇 教育学
  • 4 篇 军事学
  • 2 篇 艺术学
  • 1 篇 哲学
  • 1 篇 文学

主题

  • 24 篇 image segmentati...
  • 24 篇 feature extracti...
  • 17 篇 pattern recognit...
  • 17 篇 image processing
  • 14 篇 object detection
  • 11 篇 convolution
  • 11 篇 artificial intel...
  • 11 篇 image reconstruc...
  • 10 篇 shape
  • 9 篇 laboratories
  • 9 篇 computer vision
  • 9 篇 infrared imaging
  • 8 篇 image enhancemen...
  • 8 篇 support vector m...
  • 8 篇 target tracking
  • 8 篇 image edge detec...
  • 8 篇 semantics
  • 8 篇 algorithm design...
  • 8 篇 image analysis
  • 7 篇 pixel

机构

  • 32 篇 institute of ima...
  • 21 篇 school of inform...
  • 18 篇 state key labora...
  • 17 篇 key laboratory o...
  • 15 篇 school of softwa...
  • 12 篇 key laboratory o...
  • 11 篇 key laboratory o...
  • 10 篇 institute for pa...
  • 10 篇 key laboratory o...
  • 9 篇 institute of ima...
  • 9 篇 state key labora...
  • 8 篇 national key lab...
  • 8 篇 pattern recognit...
  • 8 篇 college of infor...
  • 8 篇 institute of pat...
  • 8 篇 key laboratory o...
  • 8 篇 key laboratory o...
  • 8 篇 university of ch...
  • 7 篇 key laboratory o...
  • 7 篇 school of comput...

作者

  • 28 篇 yang jie
  • 27 篇 zhang tianxu
  • 21 篇 huang xiaolin
  • 17 篇 jie yang
  • 15 篇 ding mingyue
  • 14 篇 jinwen tian
  • 14 篇 tian jinwen
  • 14 篇 liu jian
  • 13 篇 zhou jie
  • 12 篇 li qishen
  • 12 篇 jian liu
  • 11 篇 tianxu zhang
  • 11 篇 shen hong-bin
  • 10 篇 cai chao
  • 10 篇 qishen li
  • 10 篇 mingyue ding
  • 9 篇 shao zehui
  • 9 篇 yang yang
  • 9 篇 he fan
  • 9 篇 meng fandong

语言

  • 474 篇 英文
  • 19 篇 中文
  • 7 篇 其他
检索条件"机构=the Key Laboratory of Images Processing and Pattern Recognition Laboratory"
500 条 记 录,以下是181-190 订阅
排序:
EEG-Based Brain-Computer Interfaces Are Vulnerable to Backdoor Attacks
Research Square
收藏 引用
Research Square 2021年
作者: Meng, Lubin Huang, Jian Zeng, Zhigang Jiang, Xue Yu, Shan Jung, Tzyy-Ping Lin, Chin-Teng Chavarriaga, Ricardo Wu, Dongrui Ministry of Education Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China Brainnetome Center and National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China La Jolla CA United States Center for Advanced Neurological Engineering Institute of Engineering in Medicine UCSD La Jolla CA United States Centre of Artificial Intelligence Faculty of Engineering and Information Technology University of Technology Sydney Australia ZHAW DataLab Zürich University of Applied Sciences Winterthur8401 Switzerland
Research and development of electroencephalogram (EEG) based brain-computer interfaces (BCIs) have advanced rapidly, partly due to the wide adoption of sophisticated machine learning approaches for decoding the EEG si... 详细信息
来源: 评论
Self-grouping convolutional neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Guo, Qingbei Wu, Xiao-Jun Kittler, Josef Feng, Zhiquan Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi214122 China Shandong Provincial Key Laboratory of Network based Intelligent Computing University of Jinan Jinan250022 China Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
Although group convolution operators are increasingly used in deep convolutional neural networks to improve the computational efficiency and to reduce the number of parameters, most existing methods construct their gr... 详细信息
来源: 评论
Multi-granulation variable precision rough set based on limited tolerance relation
收藏 引用
UPB Scientific Bulletin, Series A: Applied Mathematics and Physics 2021年 第3期83卷 63-74页
作者: Wan, Renxia Yao, Yonghong Kumar, Hussain School of Mathematics and Information Science North Minzu University Ningxia750021 China HongYang Institute for Big Data in Health Fuzhou Fujian350028 China School of Mathematical Sciences Tiangong University Tianjin300387 China The Key Laboratory of Intelligent Information and Data Processing of NingXia Province North Minzu University and Health Big Data Research Institute of North Minzu University Yinchuan750021 China Machine vision and pattern recognition lab University of Regina ReginaSKS4S0A2 Canada
In this paper, the combination of the variable precision rough set and the limited tolerance relation under multi-granularity is explored. As an extension of rough set model, Multi-granularity variable precision limit... 详细信息
来源: 评论
DAmageNet: A universal adversarial dataset
arXiv
收藏 引用
arXiv 2019年
作者: Chen, Sizhe Huang, Xiaolin He, Zhengbao Sun, Chengjin Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University MOE Key Laboratory of System Control and Information Processing 800 Dongchuan Road Shanghai200240 China
It is now well known that deep neural networks (DNNs) are vulnerable to adversarial attack. Adversarial samples are similar to the clean ones, but are able to cheat the attacked DNN to produce incorrect predictions in... 详细信息
来源: 评论
Analysis of Least Squares Regularized Regression in Reproducing Kernel Kreın Spaces
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Fanghui Shi, Lei Huang, Xiaolin Yang, Jie Suykens, Johan A.K. Department of Electrical Engineering [ESAT-STADIUS KU Leuven LeuvenB-3001 Belgium Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China Shanghai Key Laboratory for Contemporary Applied Mathematics School of Mathematical Sciences Fudan University Shanghai China
In this paper, we study the asymptotical properties of least squares regularized regression with indefinite kernels in reproducing kernel Kreın spaces (RKKS). The classical approximation analysis cannot be directly ap... 详细信息
来源: 评论
Multi-level graph convolutional network with automatic graph learning for hyperspectral image classification
arXiv
收藏 引用
arXiv 2020年
作者: Wan, Sheng Gong, Chen Pan, Shirui Yang, Jie Yang, Jian PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education Jiangsu Key Laboratory of Image Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Faculty of Information Technology Monash University ClaytonVIC3800 Australia
Nowadays, deep learning methods, especially the Graph Convolutional Network (GCN), have shown impressive performance in hyperspectral image (HSI) classification. However, the current GCN-based methods treat graph cons... 详细信息
来源: 评论
Sparse generalized canonical correlation analysis: Distributed alternating iteration based approach
arXiv
收藏 引用
arXiv 2020年
作者: Cai, Jia Lv, Kexin Huo, Junyi Huang, Xiaolin Yang, Jie School of Statistics and Mathematics Guangdong University of Finance & Economics Big Data and Educational Statistics Application Laboratory 21 Chisha Road Guangzhou Guangdong510320 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University MOE Key Laboratory of System Control and Information Processing 800 Dongchuan Road Shanghai200240 China School of Electronics and Computer Science University of Southampton University Road SouthamptonSO17 1BJ United Kingdom
Sparse canonical correlation analysis (CCA) is a useful statistical tool to detect latent information with sparse structures. However, sparse CCA works only for two datasets, i.e., there are only two views or two dist... 详细信息
来源: 评论
Relationship between pulmonary nodule malignancy and surrounding pleurae, airways and vessels: a quantitative study using the public LIDC-IDRI dataset
arXiv
收藏 引用
arXiv 2021年
作者: Qin, Yulei Gu, Yun Zhang, Hanxiao Yang, Jie Wang, Lihui Wang, Zhexin Yao, Feng Zhu, Yue-Min Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Institute of Medical Robotics Shanghai Jiao Tong University Shanghai200240 China CREATIS INSA Lyon CNRS UMR 5220 INSERM U1206 Université de Lyon Villeurbanne69621 France Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province School of Computer Science and Technology Guizhou University Guiyang550025 China Department of Thoracic Surgery Shanghai Chest Hospital Shanghai Jiao Tong University Shanghai200025 China
Objectives: To investigate whether the pleurae, airways and vessels surrounding a nodule on non-contrast computed tomography (CT) can discriminate benign and malignant pulmonary nodules. Materials and Methods: The LID... 详细信息
来源: 评论
Oracle character recognition by nearest neighbor classification with deep metric learning  15
Oracle character recognition by nearest neighbor classificat...
收藏 引用
15th IAPR International Conference on Document Analysis and recognition, ICDAR 2019
作者: Zhang, Yi-Kang Zhang, Heng Liu, Yong-Ge Yang, Qing Liu, Cheng-Lin National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences 95 Zhongguancun East Road Beijing100190 China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China CAS Center for Excellence of Brain Science and Intelligence Technology Beijing China School of Computer & Information Engineering Anyang Normal University Henan China Key Laboratory of Oracle Bone Inscriptions Information Processing Ministry of Education Henan China
Oracle character is one kind of the earliest hieroglyphics, which can be dated back to Shang Dynasty in China. Oracle character recognition is important for modern archaeology, ancient text understanding, and historic... 详细信息
来源: 评论
Learning data-adaptive non-parametric kernels
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 8590-8628页
作者: Fanghui Liu Xiaolin Huang Chen Gong Jie Yang Li Li Department of Electrical Engineering ESAT-STADIUS KU Leuven Belgium Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology China and Department of Computing Hong Kong Polytechnic University Hong Kong SAR China Department of Automation BNRist Tsinghua University China
In this paper, we propose a data-adaptive non-parametric kernel learning framework in margin based kernel methods. In model formulation, given an initial kernel matrix, a data-adaptive matrix with two constraints is i... 详细信息
来源: 评论