Asymmetric kernels naturally exist in real life, e.g., for conditional probability and directed graphs. However, most of the existing kernel-based learning methods require kernels to be symmetric, which prevents the u...
详细信息
—Existing generalization theories analyze the generalization performance mainly based on the model complexity and training process. The ignorance of the task properties, which results from the widely used IID assumpt...
详细信息
Contextual information plays an important role in action recognition. Local operations have difficulty to model the relation between two elements with a long-distance interval. However, directly modeling the contextua...
详细信息
In this paper, we study the asymptotical properties of least squares regularized regression with indefinite kernels in reproducing kernel Kreın spaces (RKKS). The classical approximation analysis cannot be directly ap...
详细信息
Short-term forecasting of travel time is essential for the success of intelligent transportation system. In this paper, we review the state-of-art of short-term traffic forecasting models and outline their basic ideas...
详细信息
Short-term forecasting of travel time is essential for the success of intelligent transportation system. In this paper, we review the state-of-art of short-term traffic forecasting models and outline their basic ideas, related works, advantages and disadvantages of each model. An improved adaptive exponential smoothing (IAES) model is also proposed to overcome the drawbacks of the previous adaptive exponential smoothing model. Then, comparing experiments are carried out under normal traffic condition and abnormal traffic condition to evaluate the performance of four main branches of forecasting models on direct travel time data obtained by license plate matching (LPM). The results of experiments show each model seems to have its own strength and weakness. The forecasting performance of IASE is superior to other models in shorter forecasting horizon (one and two step forecasting) and the IASE is capable of dealing with all kind of traffic conditions.
Nowadays, deep learning methods, especially the Graph Convolutional Network (GCN), have shown impressive performance in hyperspectral image (HSI) classification. However, the current GCN-based methods treat graph cons...
详细信息
An efficient image denoising algorithm is introduced. Firstly, image pixels are classified into noisy pixels and noise-free pixels by four directional operators. Then an adaptive weighted median filter is designed to ...
详细信息
An efficient image denoising algorithm is introduced. Firstly, image pixels are classified into noisy pixels and noise-free pixels by four directional operators. Then an adaptive weighted median filter is designed to remove and restore the detected noisy pixels and keep the noise-free ones unchanged. Experimental results indicate that the proposed algorithm preserves image details well while removing impulsive noise efficiently, and its filtering performance is significantly superior to the classical median filter and some other typical and recently developed improved median filters.
Moving cast shadow causes serious problem while segmenting and extracting foreground from image sequences, due to the misclassification of moving shadow as foreground. This paper proposes a Boosting discriminative mod...
详细信息
Moving cast shadow causes serious problem while segmenting and extracting foreground from image sequences, due to the misclassification of moving shadow as foreground. This paper proposes a Boosting discriminative model to eliminate cast shadow on Discriminative Random Fields (DRFs). The method combines different features for Boosting to discriminate cast shadow from moving objects, then temporal and spatial coherence of shadow and foreground are incorporated on Discriminative Random Fields and the problem can be solved by graph cut. Firstly, moving objects are obtained by background subtraction;secondly, shadow candidates can be derived through pre-processing moving objects, in terms of the shadow physical property;thirdly, color information and texture information is derived by comparing shadow and foreground points in current image with corresponding points in background image, which are selected as features for Boosting;finally, temporal and spatial coherence of shadow and foreground is employed on Discriminative Random Fields and discriminate shadow and foreground by graph cut accurately.
Sparse canonical correlation analysis (CCA) is a useful statistical tool to detect latent information with sparse structures. However, sparse CCA works only for two datasets, i.e., there are only two views or two dist...
详细信息
暂无评论