咨询与建议

限定检索结果

文献类型

  • 480 篇 会议
  • 359 篇 期刊文献

馆藏范围

  • 839 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 569 篇 工学
    • 254 篇 计算机科学与技术...
    • 233 篇 软件工程
    • 211 篇 控制科学与工程
    • 104 篇 机械工程
    • 85 篇 电气工程
    • 80 篇 信息与通信工程
    • 60 篇 生物工程
    • 55 篇 电子科学与技术(可...
    • 43 篇 生物医学工程(可授...
    • 42 篇 仪器科学与技术
    • 35 篇 化学工程与技术
    • 34 篇 光学工程
    • 33 篇 动力工程及工程热...
    • 32 篇 交通运输工程
    • 27 篇 材料科学与工程(可...
    • 22 篇 航空宇航科学与技...
    • 19 篇 力学(可授工学、理...
    • 15 篇 安全科学与工程
    • 14 篇 建筑学
  • 337 篇 理学
    • 179 篇 数学
    • 84 篇 系统科学
    • 82 篇 物理学
    • 70 篇 生物学
    • 51 篇 统计学(可授理学、...
    • 30 篇 化学
  • 127 篇 管理学
    • 103 篇 管理科学与工程(可...
    • 29 篇 工商管理
    • 25 篇 图书情报与档案管...
  • 20 篇 医学
    • 16 篇 临床医学
  • 17 篇 经济学
    • 17 篇 应用经济学
  • 9 篇 法学
  • 4 篇 农学
  • 2 篇 教育学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 18 篇 reinforcement le...
  • 16 篇 simulation
  • 16 篇 optimization
  • 15 篇 automation
  • 15 篇 heuristic algori...
  • 13 篇 predictive model...
  • 12 篇 stability analys...
  • 12 篇 feature extracti...
  • 12 篇 accuracy
  • 11 篇 control systems
  • 11 篇 data models
  • 11 篇 robustness
  • 10 篇 target tracking
  • 10 篇 real-time system...
  • 10 篇 fault detection
  • 10 篇 adaptation model...
  • 9 篇 networked contro...
  • 9 篇 model predictive...
  • 9 篇 sliding mode con...
  • 9 篇 state estimation

机构

  • 71 篇 department of au...
  • 58 篇 key laboratory o...
  • 40 篇 department of au...
  • 26 篇 key laboratory o...
  • 20 篇 college of elect...
  • 19 篇 school of artifi...
  • 18 篇 key laboratory o...
  • 17 篇 national key lab...
  • 17 篇 college of compu...
  • 17 篇 department of au...
  • 17 篇 shanghai jiao to...
  • 16 篇 beijing aerospac...
  • 16 篇 state key labora...
  • 15 篇 school of automa...
  • 14 篇 sansteel minguan...
  • 13 篇 hubei province k...
  • 13 篇 college of elect...
  • 12 篇 shaanxi key labo...
  • 12 篇 school of automa...
  • 11 篇 shanghai enginee...

作者

  • 26 篇 zhezhuang xu
  • 24 篇 wang hesheng
  • 23 篇 xu zhezhuang
  • 20 篇 pan linqiang
  • 17 篇 wang xiaofan
  • 15 篇 wang lin
  • 15 篇 lei liu
  • 14 篇 guan xinping
  • 14 篇 yang ming
  • 13 篇 yang bo
  • 13 篇 xiongjun wu
  • 13 篇 wang guangming
  • 13 篇 xiaofan wang
  • 13 篇 zhang youmin
  • 12 篇 song zheng
  • 12 篇 zheng song
  • 12 篇 wang chunxiang
  • 11 篇 li xi
  • 11 篇 hesheng wang
  • 11 篇 housheng su

语言

  • 787 篇 英文
  • 37 篇 其他
  • 16 篇 中文
检索条件"机构=the Key Laboratory of Industrial Automation Control Technology and Information Processing"
839 条 记 录,以下是391-400 订阅
排序:
Detection of Weak Signal Amplitude of Winding Deformation Based on Duffing Oscillator
Detection of Weak Signal Amplitude of Winding Deformation Ba...
收藏 引用
Chinese control Conference (CCC)
作者: Sheng-Min Li Yuan-Yuan He Yue-Yue Che Xu-Xia Sun Academy of Automation & Information Engineering Xi’an University of Technology Xi’an Key Laboratory of Shaanxi Province for Complex System Control and Intelligent Information Processing Xi’an
In order to solve the problem that it is difficult to detect the weak sinusoidal response signal when the frequency response method is used to detect the transformer winding deformation fault online, this paper propos... 详细信息
来源: 评论
Data-driven approximation of control invariant set for linear system based on convex piecewise linear fitting
arXiv
收藏 引用
arXiv 2022年
作者: Xu, Jun Chen, Fanglin School of Mechanical Engineering and Automation Harbin Institute of Technology Shenzhen518055 China The Key Laboratory of System Control and Information Processing Ministry of Education Shanghai200240 China The Department of Computer Engineering Harbin Institute of Technology Shenzhen518055 China
control invariant set is critical for guaranteeing safe control and the problem of computing control invariant set for linear discrete-time system is revisited in this paper by using a data-driven approach. Specifical... 详细信息
来源: 评论
Recurrent Attentional Reinforcement Learning for Machinery Fault Diagnosis
SSRN
收藏 引用
SSRN 2024年
作者: Tang, Zhenhui Wang, Jingcheng Wu, Shunyu The Department of Automation The Key Laboratory of System Control and Information Processing Ministry of Education of China The Shanghai Engineering Research Center of Intelligent Control and Management Shanghai Jiao Tong University No.800 Dongchuan Road Shanghai200240 China The SJTU Sanya Yazhou Bay Institute of Deepsea Science and Technology Sanya572024 China The Autonomous Systems and Intelligent Control International Joint Research Center Xi’an Technological University Xi’an710021 China
Recognizing fault types of machinery system is a fundamental but challenging task in industrial application. Although remarkable progress has been attained by learning fault features and predicting the corresponded fa... 详细信息
来源: 评论
Robust adaptive neural network consensus tracking control of multi-robot systems
Robust adaptive neural network consensus tracking control of...
收藏 引用
第33届中国控制与决策会议
作者: Huijun Guo Jintao Liang School of Automation and Information Engineering Xi'an University of Technology Key Laboratory of Shaanxi Province for Complex System Control and Intelligent Information Processing Guilin University of Electronic Technology
This paper studies the problem of distributed consensus tracking control for multi-robot systems with different friction coefficients and external disturbances based on the multi-agent *** the case where the communica... 详细信息
来源: 评论
Adaptive Back-stepping Based control for Active Suspension Systems with Prescribed Performance
Adaptive Back-stepping Based Control for Active Suspension S...
收藏 引用
第40届中国控制会议
作者: Huijun Guo Jintao Liang School of Automation and Information Engineering Xi'an University of Technology Key Laboratory of Shaanxi Province for Complex System Control and Intelligent Information Processing Guilin University of Electronic Technology
This paper proposes an adaptive back-stepping tracking control with prescribed performance function for vehicle suspension systems with uncertain parameters. The prescribed performance function can lead the tracking e... 详细信息
来源: 评论
Generating Natural Language adversarial examples through an improved beam search algorithm
arXiv
收藏 引用
arXiv 2021年
作者: Zhao, Tengfei Ge, Zhaocheng Hu, Hanping Shi, Dingmeng School of Artificial Intelligence and Automation Huazhong University of Science and Technology Key Laboratory of Image Information Processing and Intelligent Control Ministry of Education
The research of adversarial attacks in the text domain attracts many interests in the last few years, and many methods with a high attack success rate have been proposed. However, these attack methods are inefficient ... 详细信息
来源: 评论
Kinematic analysis and dynamics modeling of a novel ball joint actuator with three-degree-of-freedom
Kinematic analysis and dynamics modeling of a novel ball joi...
收藏 引用
International Conference on Power Electronics (ICPE)
作者: Yan Wen Yong Wang Guoli Li Qunjing Wang Qiubo Ye Qian Zhang Fang Xie School of Internet Anhui University Hefei China National Engineering Laboratory of Energy-Saving Motor & Control Technology Anhui University Hefei China School of Electrical Engineering and Automation Anhui University Hefei China Anhui Key Laboratory of Industrial Energy-Saving and Safety Anhui University Hefei China School of Ocean Information Engineering and Automation Jimei University Xiamen China
A new ball joint actuator with three-degree-of-freedom is proposed to solve the problem of space motion. It can perform some specific work in a certain space with multiple degrees of freedom. At first, the kinematics ...
来源: 评论
A Real-time Fire Segmentation Method Based on A Deep Learning Approach
收藏 引用
IFAC-PapersOnLine 2022年 第6期55卷 145-150页
作者: Mengna Li Youmin Zhang Lingxia Mu Jing Xin Ziquan Yu Shangbin Jiao Han Liu Guo Xie Yi Yingmin Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing Xi'an University of Technology Xi'an Shaanxi 710048 China Department of Mechanical Industrial and Aerospace Engineering Concordia University Montreal Quebec H3G 1M8 Canada College of Automation Engineering Nanjing University of Aeronautics and Astronautics (NUAA) Nanjing Jiangsu China
As a kind of the forest “fault”, fire is highly destructive and difficult to rescue. Fire segmentation is helpful for firefighters to understand the fire scale and formulate a reasonable fire-fighting plan. Therefor... 详细信息
来源: 评论
Early Forest Fire Segmentation Based on Deep Learning
Early Forest Fire Segmentation Based on Deep Learning
收藏 引用
2021 CAA Symposium on Fault Detection, Supervision, and Safety for Technical Processes, SAFEPROCESS 2021
作者: Li, Mengna Zhang, Youmin Xin, Jing Mu, Lingxia Yu, Ziquan Liu, Han Xie, Guo Jiao, Shangbin Yi, Yingmin Xi'an University of Technology Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing Shaanxi Xi'an710048 China Concordia University Department of Mechanical Industrial and Aerospace Engineering MontrealQCH3G 1M8 Canada Nanjing University of Aeronautics and Astronautics College of Automation Engineering Nanjing211106 China
Fire segmentation is very important for fire rescue. It can make firefighters get the information on fire area, spread direction and so on, and then help them make quick and effective fire-fighting plan. Therefore, th... 详细信息
来源: 评论
Analysis of non-Markovian passive quantum linear systems’ response to single-photon input fields*
收藏 引用
IFAC-PapersOnLine 2023年 第2期56卷 5179-5184页
作者: Zhengyi Sun Shibei Xue Zibo Miao Zhiyuan Dong Dewei Li Lulu Pan Min Jiang Department of Automation Shanghai Jiao Tong University Shanghai 200240 P. R. China Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai 200240 P. R. China Shanghai Engineering Research Center of Intelligent Control and Management Shanghai 200240 P. R. China School of Mechanical Engineering and Automation Harbin Institute of Technology Shenzhen Shenzhen 518055 P. R. China School of Electronics and Information Engineering Soochow University Suzhou 215006 P. R. China
In this paper, we analyze the response of passive quantum linear systems in a non-Markovian environment to single photon input fields. Based on an augmented modelling method for non-Markovian quantum systems, analytic... 详细信息
来源: 评论