咨询与建议

限定检索结果

文献类型

  • 476 篇 期刊文献
  • 337 篇 会议
  • 1 册 图书

馆藏范围

  • 814 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 514 篇 工学
    • 344 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 121 篇 生物工程
    • 80 篇 信息与通信工程
    • 70 篇 生物医学工程(可授...
    • 67 篇 控制科学与工程
    • 56 篇 光学工程
    • 56 篇 电气工程
    • 48 篇 化学工程与技术
    • 42 篇 电子科学与技术(可...
    • 26 篇 安全科学与工程
    • 20 篇 仪器科学与技术
    • 19 篇 机械工程
    • 17 篇 网络空间安全
    • 16 篇 力学(可授工学、理...
  • 379 篇 理学
    • 188 篇 数学
    • 125 篇 生物学
    • 121 篇 物理学
    • 82 篇 统计学(可授理学、...
    • 57 篇 化学
    • 39 篇 系统科学
    • 17 篇 地球物理学
  • 119 篇 管理学
    • 68 篇 管理科学与工程(可...
    • 52 篇 图书情报与档案管...
    • 37 篇 工商管理
  • 62 篇 医学
    • 52 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 25 篇 公共卫生与预防医...
    • 23 篇 药学(可授医学、理...
  • 19 篇 法学
    • 17 篇 社会学
  • 15 篇 经济学
  • 13 篇 农学
  • 7 篇 教育学

主题

  • 48 篇 machine learning
  • 46 篇 deep learning
  • 42 篇 accuracy
  • 22 篇 real-time system...
  • 22 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 reviews
  • 19 篇 training
  • 18 篇 convolutional ne...
  • 17 篇 reinforcement le...
  • 16 篇 medical services
  • 16 篇 decision making
  • 16 篇 machine learning...
  • 15 篇 support vector m...
  • 15 篇 image segmentati...
  • 15 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 forecasting
  • 11 篇 deep neural netw...
  • 11 篇 neural networks

机构

  • 49 篇 center for machi...
  • 31 篇 center for data ...
  • 30 篇 ai for science i...
  • 25 篇 school of mathem...
  • 25 篇 munich center fo...
  • 21 篇 beijing internat...
  • 20 篇 australian insti...
  • 18 篇 vector institute...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich center fo...
  • 13 篇 center for machi...
  • 13 篇 munich data scie...
  • 12 篇 dp technology
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 11 篇 peking universit...
  • 10 篇 national enginee...

作者

  • 30 篇 weinan e.
  • 22 篇 prateek verma
  • 21 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 16 篇 dong bin
  • 15 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 13 篇 bin dong
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 12 篇 verma prateek
  • 11 篇 zhang linfeng
  • 11 篇 montavon grégoir...
  • 10 篇 do thanh-toan
  • 10 篇 li zhang
  • 10 篇 abhay tale
  • 10 篇 carneiro gustavo
  • 10 篇 von rudorff guid...
  • 9 篇 swapnil gundewar
  • 8 篇 barhate aditya

语言

  • 541 篇 英文
  • 271 篇 其他
  • 1 篇 中文
检索条件"机构=the Mathematical Institute for Machine Learning and Data Science"
814 条 记 录,以下是191-200 订阅
排序:
A Minimax Optimal Control Approach for Robust Neural ODEs
A Minimax Optimal Control Approach for Robust Neural ODEs
收藏 引用
European Control Conference (ECC)
作者: Cristina Cipriani Alessandro Scagliotti Tobias Wöhrer Department of Mathematics Technical University Munich (TUM) Munich Germany Munich Data Science Institute (MDSI) Munich Germany Munich Center for Machine Learning (MCML) Munich Germany
In this paper, we address the adversarial training of neural ODEs from a robust control perspective. This is an alternative to the classical training via empirical risk minimization, and it is widely used to enforce r... 详细信息
来源: 评论
Asymptotic and compound e-values: multiple testing and empirical Bayes
arXiv
收藏 引用
arXiv 2024年
作者: Ignatiadis, Nikolaos Wang, Ruodu Ramdas, Aaditya Department of Statistics and Data Science Institute University of Chicago United States Department of Statistics and Actuarial Science University of Waterloo Canada Departments of Statistics & Machine Learning Carnegie Mellon University United States
We explicitly define the notions of (exact, approximate or asymptotic) compound p-values and e-values, which have been implicitly presented and extensively used in the recent multiple testing literature. While it is k... 详细信息
来源: 评论
Assessing Robustness via Score-Based Adversarial Image Generation
arXiv
收藏 引用
arXiv 2023年
作者: Kollovieh, Marcel Gosch, Lukas Lienen, Marten Scholten, Yan Schwinn, Leo Günnemann, Stephan School of Computation Information and Technology Technical University of Munich Germany Munich Data Science Institute Germany Munich Center for Machine Learning Germany
Most adversarial attacks and defenses focus on perturbations within small p-norm constraints. However, p threat models cannot capture all relevant semantics-preserving perturbations, and hence, the scope of robustness... 详细信息
来源: 评论
Predicting Indian Sign Language Gestures Using Deep learning and machine learning Techniques
Predicting Indian Sign Language Gestures Using Deep Learning...
收藏 引用
Sustainable Expert Systems (ICSES), International Conference on
作者: Bhushan Fulkar Rushikesh Burle Pramod Mahale Utkrsha Pacaharaney Department of Artificial intelligence And Data science Datta Meghe institute of Higher Education and Research Wardha India Department of Artificial Intelligence And Machine Learning Datta Meghe institute of Higher Education and Research(DU) Wardha Maharashtra Department of Artificial Intelligence And Machine Learning Datta Meghe institute of Higher Education and Research Wardha India
Indian Sign Language is the language used by people with disabilities in India. Unfortunately, the general public's ignorance of sign language makes it difficult for the especially abled and the general public to ... 详细信息
来源: 评论
Strictly positive definite kernels on compact Riemannian manifolds
arXiv
收藏 引用
arXiv 2023年
作者: Guella, Jean Carlo Jäger, Janin Unicamp Institute of Mathematics Statistics and Scientific Computing Campinas Brazil KU Eichstätt-Ingolstadt Mathematisches Institute for machine learning and data science Ingolstadt Germany
The paper studies strictly positive definite kernels on compact Riemannian manifolds. We state new conditions to ensure strict positive definiteness for general kernels and kernels with certain convolutional structure... 详细信息
来源: 评论
Enhancing Alzheimer's Disease Diagnosis Using Multi-Relation Graph Convolutional Networks and Structural MRI data  5
Enhancing Alzheimer's Disease Diagnosis Using Multi-Relation...
收藏 引用
5th International Conference on IoT Based Control Networks and Intelligent Systems, ICICNIS 2024
作者: Kanna, P. Rajesh Gunasundari, C. Senthamarai, M. Pandiaraja, P. Nithin, P. Chitra, K. Bannari Amman Institute of Technology Department of Computer Science and Engineering Tamil Nadu Erode India SRM Institute of Science and Technology Department of Computer Science and Engineering Tamil Nadu Trichy India Nandha Engineering College Department of Artificial Intelligence and Data Science Tamil Nadu Erode India Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology Department of Computer Science and Engineering Tamil Nadu Chennai India Bannari Amman Institute of Technology Department of Artificial Intelligence and Machine Learning Tamil Nadu Erode India Kongu Engineering College Department of Computer Applications Tamil Nadu Erode India
Alzheimer's disease (AD) has substantial obstacles to early detection, which frequently leads to therapy delays. In this article a unique method that uses structural MRI data and Multi-Relation Graph Convolutional... 详细信息
来源: 评论
Multi-Stage Bidirectional Cross-Attention Model for Predicting Prognosis in Multiple Peritoneum Lesions with Clinical Information
Multi-Stage Bidirectional Cross-Attention Model for Predicti...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Haoshen Li Jieyuan Cai Yiyuan Wei Zifan Chen Heyun Chen Jie Zhao Yanjie Shi Bin Dong Lei Tang Xiaotian Zhang Li Zhang Center for Data Science Peking University China Peking University Cancer Hospital & Institute China National Engineering Laboratory for Big Data Analysis and Applications Peking University China Peking University Changsha Institute for Computing and Digital Economy China Beijing International Center for Mathematical Research Peking University China Center for Machine Learning Research Peking University China
Peritoneal metastasis occurs when cancer cells spread from the primary tumor to the peritoneum, leading to morphological alterations that significantly impact patient survival. The specific changes across multiple per... 详细信息
来源: 评论
Counterfactually Comparing Abstaining Classifiers
arXiv
收藏 引用
arXiv 2023年
作者: Choe, Yo Joong Gangrade, Aditya Ramdas, Aaditya Data Science Institute University of Chicago United States Department of EECS University of Michigan United States Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University United States
Abstaining classifiers have the option to abstain from making predictions on inputs that they are unsure about. These classifiers are becoming increasingly popular in high-stakes decision-making problems, as they can ... 详细信息
来源: 评论
Multi-Scale Clinical-Guided Binocular Fusion Framework for Predicting New-Onset Hypertension Over a Four-Year Period
Multi-Scale Clinical-Guided Binocular Fusion Framework for P...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Haoshen Li Zifan Chen Jie Zhao Heyun Chen Hexin Dong Mingze Yuan Bin Dong Li Zhang Center for Data Science Peking University China National Engineering Laboratory for Big Data Analysis and Applications Peking University China Peking University Changsha Institute for Computing and Digital Economy China Beijing International Center for Mathematical Research Peking University China Center for Machine Learning Research Peking University China
Hypertension is a major global health concern, linked to various cardiovascular diseases and associated with distinct ocular manifestations. While recent advances in artificial intelligence have enabled accurate diagn... 详细信息
来源: 评论
machine learning-Based Security for Cloud Computing Challenges and Implications  3
Machine Learning-Based Security for Cloud Computing Challeng...
收藏 引用
3rd IEEE North Karnataka Subsection Flagship International Conference, NKCon 2024
作者: Dattangire, Rahul Burle, Rushikesh Biradar, Divya Dewangan, Leelkanth Data Engineering Independent Researcher HoustonTX77002 United States Datta Meghe Institute of Higher Education and Research Artificial Intelligence and Machine Learning Faculty of Engineering and Technology Maharashtra Wardha442001 India University of Texas at Arlington Computer Science ArlingtonTX76013 United States G H Raisoni College of Engineering Maharashtra Nagpur India
Cloud computing"is a computer model that provides end users with quantifiable, scalable, and on-demand services. These days, almost every organization uses computer technology extensively for infrastructure, cost... 详细信息
来源: 评论