咨询与建议

限定检索结果

文献类型

  • 475 篇 期刊文献
  • 337 篇 会议
  • 1 册 图书

馆藏范围

  • 813 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 510 篇 工学
    • 346 篇 计算机科学与技术...
    • 301 篇 软件工程
    • 121 篇 生物工程
    • 82 篇 信息与通信工程
    • 70 篇 生物医学工程(可授...
    • 68 篇 控制科学与工程
    • 56 篇 光学工程
    • 56 篇 电气工程
    • 48 篇 化学工程与技术
    • 41 篇 电子科学与技术(可...
    • 26 篇 安全科学与工程
    • 20 篇 仪器科学与技术
    • 18 篇 机械工程
    • 17 篇 网络空间安全
    • 16 篇 力学(可授工学、理...
  • 382 篇 理学
    • 191 篇 数学
    • 125 篇 生物学
    • 121 篇 物理学
    • 83 篇 统计学(可授理学、...
    • 57 篇 化学
    • 40 篇 系统科学
    • 17 篇 地球物理学
  • 119 篇 管理学
    • 67 篇 管理科学与工程(可...
    • 53 篇 图书情报与档案管...
    • 37 篇 工商管理
  • 63 篇 医学
    • 53 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 25 篇 公共卫生与预防医...
    • 23 篇 药学(可授医学、理...
  • 19 篇 法学
    • 17 篇 社会学
  • 15 篇 经济学
  • 14 篇 农学
  • 7 篇 教育学
  • 1 篇 文学

主题

  • 47 篇 machine learning
  • 44 篇 deep learning
  • 42 篇 accuracy
  • 22 篇 real-time system...
  • 21 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 reviews
  • 18 篇 training
  • 18 篇 convolutional ne...
  • 17 篇 reinforcement le...
  • 16 篇 medical services
  • 16 篇 decision making
  • 16 篇 machine learning...
  • 15 篇 support vector m...
  • 15 篇 image segmentati...
  • 15 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 forecasting
  • 11 篇 deep neural netw...
  • 11 篇 neural networks

机构

  • 50 篇 center for machi...
  • 31 篇 center for data ...
  • 29 篇 ai for science i...
  • 25 篇 school of mathem...
  • 23 篇 munich center fo...
  • 21 篇 beijing internat...
  • 20 篇 australian insti...
  • 18 篇 vector institute...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich center fo...
  • 13 篇 center for machi...
  • 13 篇 munich data scie...
  • 12 篇 dp technology
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 11 篇 peking universit...
  • 10 篇 national enginee...

作者

  • 30 篇 weinan e.
  • 22 篇 prateek verma
  • 21 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 16 篇 dong bin
  • 15 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 13 篇 bin dong
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 11 篇 zhang linfeng
  • 11 篇 montavon grégoir...
  • 11 篇 verma prateek
  • 10 篇 do thanh-toan
  • 10 篇 li zhang
  • 10 篇 abhay tale
  • 10 篇 carneiro gustavo
  • 10 篇 von rudorff guid...
  • 9 篇 swapnil gundewar
  • 8 篇 barhate aditya

语言

  • 660 篇 英文
  • 150 篇 其他
  • 1 篇 中文
检索条件"机构=the Mathematical Institute for Machine Learning and Data Science"
813 条 记 录,以下是231-240 订阅
排序:
Homophily and Incentive Effects in Use of Algorithms  44
Homophily and Incentive Effects in Use of Algorithms
收藏 引用
44th Annual Meeting of the Cognitive science Society: Cognitive Diversity, CogSci 2022
作者: Fogliato, Riccardo Fazelpour, Sina Gupta, Shantanu Lipton, Zachary Danks, David Department of Statistics and Data Science Carnegie Mellon University United States Department of Philosophy and Religion Khoury College of Computer Sciences Northeastern University United States Machine Learning Department Carnegie Mellon University United States Halicioğlu Data Science Institute Department of Philosophy University of California San Diego United States
As algorithmic tools increasingly aid experts in making consequential decisions, the need to understand the precise factors that mediate their influence has grown commensurately. In this paper, we present a crowdsourc... 详细信息
来源: 评论
A Closer Look at Benchmarking Self-Supervised Pre-training with Image Classification
arXiv
收藏 引用
arXiv 2024年
作者: Marks, Markus Knott, Manuel Kondapaneni, Neehar Cole, Elijah Defraeye, Thijs Perez-Cruz, Fernando Perona, Pietro California Institute of Technology United States ETH Zurich Institute for Machine Learning Department of Computer Science Switzerland Swiss Data Science Center ETH Zurich and EPFL Switzerland Empa Swiss Federal Laboratories for Materials Science and Technology Switzerland Altos Labs Switzerland
Self-supervised learning (SSL) is a machine learning approach where the data itself provides supervision, eliminating the need for external labels. The model is forced to learn about the data's inherent structure ... 详细信息
来源: 评论
Segment Together: A Versatile Paradigm for Semi-Supervised Medical Image Segmentation
收藏 引用
IEEE Transactions on Medical Imaging 2025年 PP卷 PP页
作者: Zeng, Qingjie Xie, Yutong Lu, Zilin Lu, Mengkang Wu, Yicheng Xia, Yong Northwestern Polytechnical University National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology School of Computer Science and Engineering Xi’an710072 China The University of Adelaide Australian Institute for Machine Learning AdelaideSA5000 Australia Monash University Faculty of Information Technology Department of Data Science and AI Australia
The scarcity of annotations has become a significant obstacle in training powerful deep-learning models for medical image segmentation, limiting their clinical application. To overcome this, semi-supervised learning t... 详细信息
来源: 评论
Probabilistic Decomposed Linear Dynamical Systems for Robust Discovery of Latent Neural Dynamics
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Yenho Mudrik, Noga Johnsen, Kyle A. Alagapan, Sankaraleengam Charles, Adam S. Rozell, Christopher J. Machine Learning Center Georgia Institute of Technology United States School of Electrical and Computer Engineering Georgia Institute of Technology United States Coulter Dept. of Biomedical Engineering Emory University Georgia Institute of Technology United States Department of Biomedical Engineering Mathematical Institute for Data Science Center for Imaging Science Kavli Neuroscience Discovery Institute Johns Hopkins University United States
Time-varying linear state-space models are powerful tools for obtaining mathematically interpretable representations of neural signals. For example, switching and decomposed models describe complex systems using laten... 详细信息
来源: 评论
Robust Autonomous Vehicle Pursuit without Expert Steering Labels
arXiv
收藏 引用
arXiv 2023年
作者: Pan, Jiaxin Zhou, Changyao Gladkova, Mariia Khan, Qadeer Cremers, Daniel The Technical University of Munich TUM Germany Munich Center for Machine Learning MCML Germany The University of Oxford United Kingdom The Munich Data Science Institute Germany
In this work, we present a learning method for both lateral and longitudinal motion control of an ego-vehicle for the task of vehicle pursuit. The car being controlled does not have a pre-defined route, rather it reac... 详细信息
来源: 评论
How robust is randomized blind deconvolution via nuclear norm minimization against adversarial noise?
arXiv
收藏 引用
arXiv 2023年
作者: Kostin, Julia Krahmer, Felix Stöger, Dominik Technical University of Munich Department of Mathematics Germany Munich Center for Machine Learning Germany Technical University of Munich Munich Data Science Institute Germany Germany
In this paper, we study the problem of recovering two unknown signals from their convolution, which is commonly referred to as blind deconvolution. Reformulation of blind deconvolution as a low-rank recovery problem h... 详细信息
来源: 评论
Ethical and methodological challenges in building morally informed AI systems
收藏 引用
AI and Ethics 2022年 第2期3卷 553-566页
作者: Hagendorff, Thilo Danks, David Cluster of Excellence “Machine Learning: New Perspectives for Science” University of Tuebingen Tuebingen Germany Halicioğlu Data Science Institute University of California San Diego USA
Recent progress in large language models has led to applications that can (at least) simulate possession of full moral agency due to their capacity to report context-sensitive moral assessments in open-domain conversa...
来源: 评论
A Two-Stage Minimum Cost Multicut Approach to Self-supervised Multiple Person Tracking  15th
A Two-Stage Minimum Cost Multicut Approach to Self-supervise...
收藏 引用
15th Asian Conference on Computer Vision, ACCV 2020
作者: Ho, Kalun Kardoost, Amirhossein Pfreundt, Franz-Josef Keuper, Janis Keuper, Margret Fraunhofer Center Machine Learning Sankt Augustin Germany CC-HPC Fraunhofer ITWM Kaiserslautern Germany Data and Web Science Group University of Mannheim Mannheim Germany Institute for Machine Learning and Analytics Offenburg University Offenburg Germany
Multiple Object Tracking (MOT) is a long-standing task in computer vision. Current approaches based on the tracking by detection paradigm either require some sort of domain knowledge or supervision to associate data c... 详细信息
来源: 评论
Optimal bounds for ℓp sensitivity sampling via ℓ2 augmentation  24
Optimal bounds for ℓp sensitivity sampling via ℓ2 augmenta...
收藏 引用
Proceedings of the 41st International Conference on machine learning
作者: Alexander Munteanu Simon Omlor Dortmund Data Science Center Faculties of Statistics and Computer Science TU Dortmund University Dortmund Germany Faculty of Statistics TU Dortmund University Dortmund Germany and Lamarr-Institute for Machine Learning and Artificial Intelligence Dortmund Germany
data subsampling is one of the most natural methods to approximate a massively large data set by a small representative proxy. In particular, sensitivity sampling received a lot of attention, which samples points prop...
来源: 评论
The Sharpness Disparity Principle in Transformers for Accelerating Language Model Pre-Training
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Jinbo Wang, Mingze Zhou, Zhanpeng Yan, Junchi Weinan, E. Wu, Lei School of Mathematical Sciences Peking University China Center for Machine Learning Research Peking University China Sch. of Computer Science Sch. of Artificial Intelligence Shanghai Jiao Tong University China AI for Science Institute Beijing China
Transformers consist of diverse building blocks, such as embedding layers, normalization layers, self-attention mechanisms, and point-wise feedforward networks. Thus, understanding the differences and interactions amo... 详细信息
来源: 评论