咨询与建议

限定检索结果

文献类型

  • 478 篇 期刊文献
  • 337 篇 会议
  • 1 册 图书

馆藏范围

  • 816 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 512 篇 工学
    • 344 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 121 篇 生物工程
    • 80 篇 信息与通信工程
    • 70 篇 生物医学工程(可授...
    • 67 篇 控制科学与工程
    • 56 篇 光学工程
    • 55 篇 电气工程
    • 48 篇 化学工程与技术
    • 41 篇 电子科学与技术(可...
    • 26 篇 安全科学与工程
    • 20 篇 仪器科学与技术
    • 19 篇 机械工程
    • 17 篇 网络空间安全
    • 16 篇 力学(可授工学、理...
  • 379 篇 理学
    • 188 篇 数学
    • 125 篇 生物学
    • 121 篇 物理学
    • 82 篇 统计学(可授理学、...
    • 57 篇 化学
    • 39 篇 系统科学
    • 17 篇 地球物理学
  • 119 篇 管理学
    • 68 篇 管理科学与工程(可...
    • 52 篇 图书情报与档案管...
    • 37 篇 工商管理
  • 62 篇 医学
    • 52 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 25 篇 公共卫生与预防医...
    • 23 篇 药学(可授医学、理...
  • 19 篇 法学
    • 17 篇 社会学
  • 15 篇 经济学
  • 13 篇 农学
  • 7 篇 教育学

主题

  • 48 篇 machine learning
  • 47 篇 deep learning
  • 42 篇 accuracy
  • 22 篇 real-time system...
  • 22 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 reviews
  • 19 篇 training
  • 18 篇 convolutional ne...
  • 17 篇 reinforcement le...
  • 16 篇 medical services
  • 16 篇 decision making
  • 16 篇 artificial intel...
  • 16 篇 machine learning...
  • 15 篇 support vector m...
  • 15 篇 image segmentati...
  • 14 篇 diseases
  • 13 篇 forecasting
  • 11 篇 deep neural netw...
  • 11 篇 neural networks

机构

  • 49 篇 center for machi...
  • 31 篇 center for data ...
  • 30 篇 ai for science i...
  • 25 篇 school of mathem...
  • 25 篇 munich center fo...
  • 21 篇 beijing internat...
  • 20 篇 australian insti...
  • 18 篇 vector institute...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich center fo...
  • 13 篇 center for machi...
  • 13 篇 munich data scie...
  • 12 篇 dp technology
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 11 篇 peking universit...
  • 10 篇 national enginee...

作者

  • 30 篇 weinan e.
  • 22 篇 prateek verma
  • 21 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 16 篇 dong bin
  • 15 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 13 篇 bin dong
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 11 篇 zhang linfeng
  • 11 篇 li zhang
  • 11 篇 montavon grégoir...
  • 11 篇 verma prateek
  • 10 篇 do thanh-toan
  • 10 篇 abhay tale
  • 10 篇 carneiro gustavo
  • 10 篇 von rudorff guid...
  • 9 篇 swapnil gundewar
  • 8 篇 jie zhao

语言

  • 543 篇 英文
  • 271 篇 其他
  • 1 篇 中文
检索条件"机构=the Mathematical Institute for Machine Learning and Data Science"
816 条 记 录,以下是271-280 订阅
排序:
Noisy Recovery in Unlimited Sampling via Adaptive Modulo Representations
Noisy Recovery in Unlimited Sampling via Adaptive Modulo Rep...
收藏 引用
International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa)
作者: Felipe Pagginelli Patricio Paul Catala Felix Krahmer Dept. of Mathematics TU Munich Garching Germany IBMI Helmholtz Munich Neuherberg Germany Dept. of Mathematics&Munich Data Science Institute TU Munich and Munich Center for Machine Learning Garching
Recent works put forth the Unlimited Sensing Framework (USF), a novel approach to analog-to-digital conversion for high dynamic range sensing. It addresses the saturation phenomenon that commonly arises when physical ... 详细信息
来源: 评论
Development of Deep learning Model for Detection of Abdominal Diseases using Radiological Images
Development of Deep Learning Model for Detection of Abdomina...
收藏 引用
Artificial Intelligence in Education and Industry 4.0 (IDICAIEI), DMIHER International Conference on
作者: Vidhi Wankhade Soyal Nimbalkar Kajal Dakhare Rohan Jangamwar Meher Langote Prateek Verma Artificial Intelligence and Data Science Faculty of Engineering and Technology Datta Meghe Institute of Higher Education and Research Maharashtra India Artificial Intelligence and Machine Learning Faculty of Engineering and Technology Datta Meghe Institute of Higher Education and Research Maharashtra India
As the abdominal and chest injuries are high morbidity and mortality around the globe, these pose an acute challenge in emergency care. Current data from recently released sources indicate that more than half of the p... 详细信息
来源: 评论
Reliability and predictability of phenotype information from functional connectivity in large imaging datasets
arXiv
收藏 引用
arXiv 2024年
作者: Dafflon, Jessica Moraczewski, Dustin Earl, Eric Nielson, Dylan M. Loewinger, Gabriel McClure, Patrick Thomas, Adam G. Pereira, Francisco Data Science & Sharing Team National Institute of Mental Health BethesdaMD United States Machine Learning Team National Institute of Mental Health BethesdaMD United States Naval Postgraduate School MontereyCA United States
One of the central objectives of contemporary neuroimaging research is to create predictive models that can disentangle the connection between patterns of functional connectivity across the entire brain and various be... 详细信息
来源: 评论
Approximating Positive Homogeneous Functions with Scale Invariant Neural Networks
arXiv
收藏 引用
arXiv 2023年
作者: Bamberger, Stefan Heckel, Reinhard Krahmer, Felix Department of Mathematics Technical University of Munich Holsten Systems GmbH Germany Department of Computer Engineering Technical University of Munich Munich Center for Machine Learning Germany Department of Mathematics Munich Data Science Institute Technical University of Munich Munich Center for Machine Learning Germany
We investigate to what extent it is possible to solve linear inverse problems with ReLu networks. Due to the scaling invariance arising from the linearity, an optimal reconstruction function f for such a problem is po... 详细信息
来源: 评论
Uni-Mol2: Exploring Molecular Pretraining Model at Scale
arXiv
收藏 引用
arXiv 2024年
作者: Ji, Xiaohong Wang, Zhen Gao, Zhifeng Zheng, Hang Zhang, Linfeng Ke, Guolin Weinan, E. DP Technology Beijing100080 China AI for Science Institute Beijing100080 China School of Mathematical Sciences Peking University Beijing100871 China Center for Machine Learning Research Peking University Beijing100084 China
In recent years, pretraining models have made significant advancements in the fields of natural language processing (NLP), computer vision (CV), and life sciences. The significant advancements in NLP and CV are predom... 详细信息
来源: 评论
Segment Together: A Versatile Paradigm for Semi-Supervised Medical Image Segmentation
arXiv
收藏 引用
arXiv 2023年
作者: Zeng, Qingjie Xie, Yutong Lu, Zilin Lu, Mengkang Wu, Yicheng Xia, Yong School of Computer Science and Engineering Northwestern Polytechnical University China Australian Institute for Machine Learning University of Adelaide Australia Department of Data Science & AI Faculty of Information Technology Monash University Australia
Annotation scarcity has become a major obstacle for training powerful deep-learning models for medical image segmentation, restricting their deployment in clinical scenarios. To address it, semi-supervised learning by... 详细信息
来源: 评论
Audio-based Kinship Verification Using Age Domain Conversion
arXiv
收藏 引用
arXiv 2024年
作者: Sun, Qiyang Akman, Alican Jing, Xin Milling, Manuel Schuller, Björn W. GLAM Department of Computing Imperial College London United Kingdom MRI Technical University of Munich Germany MDSI – Munich Data Science Institute Munich Germany MCML – Munich Center for Machine Learning Munich Germany
Audio-based kinship verification (AKV) is important in many domains, such as home security monitoring, forensic identification, and social network analysis. A key challenge in the task arises from differences in age a... 详细信息
来源: 评论
Pitfalls of epistemic uncertainty quantification through loss minimisation  22
Pitfalls of epistemic uncertainty quantification through los...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Viktor Bengs Eyke Hüllermeier Willem Waegeman Institute of Informatics University of Munich (LMU) Institute of Informatics University of Munich (LMU) and Munich Center for Machine Learning Department of Data Analysis and Mathematical Modeling Ghent University
Uncertainty quantification has received increasing attention in machine learning in the recent past. In particular, a distinction between aleatoric and epistemic uncertainty has been found useful in this regard. The l...
来源: 评论
Enrolment-based personalisation for improving individual-level fairness in speech emotion recognition
arXiv
收藏 引用
arXiv 2024年
作者: Triantafyllopoulos, Andreas Schuller, Björn MRI Technical University of Munich Germany MCML - Munich Center for Machine Learning Germany MDSI - Munich Data Science Institute Germany GLAM - Group on Language Audio & Music Imperial College London United Kingdom
The expression of emotion is highly individualistic. However, contemporary speech emotion recognition (SER) systems typically rely on population-level models that adopt a 'one-size-fits-all' approach for predi... 详细信息
来源: 评论
MATHGLANCE: Multimodal Large Language Models Do Not Know Where to Look in mathematical Diagrams
arXiv
收藏 引用
arXiv 2025年
作者: Sun, Yanpeng Zhang, Shan Tang, Wei Chen, Aotian Koniusz, Piotr Zou, Kai Xue, Yuan van den Hengel, Anton National University of Singapore Singapore Australian Institute for Machine Learning Australia Nanjing University of Science and Technology China Ohio State University United States Data61 CSIRO Australia NetMind.ai United Kingdom
Diagrams serve as a fundamental form of visual language, representing complex concepts and their interrelationships through structured symbols, shapes, and spatial arrangements. Unlike natural images, their inherently... 详细信息
来源: 评论