咨询与建议

限定检索结果

文献类型

  • 478 篇 期刊文献
  • 337 篇 会议
  • 1 册 图书

馆藏范围

  • 816 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 512 篇 工学
    • 344 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 121 篇 生物工程
    • 80 篇 信息与通信工程
    • 70 篇 生物医学工程(可授...
    • 67 篇 控制科学与工程
    • 56 篇 光学工程
    • 55 篇 电气工程
    • 48 篇 化学工程与技术
    • 41 篇 电子科学与技术(可...
    • 26 篇 安全科学与工程
    • 20 篇 仪器科学与技术
    • 19 篇 机械工程
    • 17 篇 网络空间安全
    • 16 篇 力学(可授工学、理...
  • 379 篇 理学
    • 188 篇 数学
    • 125 篇 生物学
    • 121 篇 物理学
    • 82 篇 统计学(可授理学、...
    • 57 篇 化学
    • 39 篇 系统科学
    • 17 篇 地球物理学
  • 119 篇 管理学
    • 68 篇 管理科学与工程(可...
    • 52 篇 图书情报与档案管...
    • 37 篇 工商管理
  • 62 篇 医学
    • 52 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 25 篇 公共卫生与预防医...
    • 23 篇 药学(可授医学、理...
  • 19 篇 法学
    • 17 篇 社会学
  • 15 篇 经济学
  • 13 篇 农学
  • 7 篇 教育学

主题

  • 48 篇 machine learning
  • 47 篇 deep learning
  • 42 篇 accuracy
  • 22 篇 real-time system...
  • 22 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 reviews
  • 19 篇 training
  • 18 篇 convolutional ne...
  • 17 篇 reinforcement le...
  • 16 篇 medical services
  • 16 篇 decision making
  • 16 篇 artificial intel...
  • 16 篇 machine learning...
  • 15 篇 support vector m...
  • 15 篇 image segmentati...
  • 14 篇 diseases
  • 13 篇 forecasting
  • 11 篇 deep neural netw...
  • 11 篇 neural networks

机构

  • 49 篇 center for machi...
  • 31 篇 center for data ...
  • 30 篇 ai for science i...
  • 25 篇 school of mathem...
  • 25 篇 munich center fo...
  • 21 篇 beijing internat...
  • 20 篇 australian insti...
  • 18 篇 vector institute...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich center fo...
  • 13 篇 center for machi...
  • 13 篇 munich data scie...
  • 12 篇 dp technology
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 11 篇 peking universit...
  • 10 篇 national enginee...

作者

  • 30 篇 weinan e.
  • 22 篇 prateek verma
  • 21 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 16 篇 dong bin
  • 15 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 13 篇 bin dong
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 11 篇 zhang linfeng
  • 11 篇 li zhang
  • 11 篇 montavon grégoir...
  • 11 篇 verma prateek
  • 10 篇 do thanh-toan
  • 10 篇 abhay tale
  • 10 篇 carneiro gustavo
  • 10 篇 von rudorff guid...
  • 9 篇 swapnil gundewar
  • 8 篇 jie zhao

语言

  • 543 篇 英文
  • 271 篇 其他
  • 1 篇 中文
检索条件"机构=the Mathematical Institute for Machine Learning and Data Science"
816 条 记 录,以下是321-330 订阅
排序:
Preventing Representational Rank Collapse in MPNNs by Splitting the Computational Graph
arXiv
收藏 引用
arXiv 2024年
作者: Roth, Andreas Bause, Franka Kriege, Nils M. Liebig, Thomas Faculty of Computer Science TU Dortmund University Dortmund Germany Faculty of Computer Science University of Vienna Vienna Austria UniVie Doctoral School Computer Science University of Vienna Vienna Austria Research Network Data Science University of Vienna Vienna Austria Lamarr Institute for Machine Learning and Artificial Intelligence Dortmund Germany
The ability of message-passing neural networks (MPNNs) to fit complex functions over graphs is limited as most graph convolutions amplify the same signal across all feature channels, a phenomenon known as rank collaps... 详细信息
来源: 评论
The Challenges of the Nonlinear Regime for Physics-Informed Neural Networks
arXiv
收藏 引用
arXiv 2024年
作者: Bonfanti, Andrea Bruno, Giuseppe Cipriani, Cristina BMW AG Basque Center for Applied Mathematics University of the Basque Country Digital Campus Munich Spain BMW AG Digital Campus Munich Germany Technical University of Munich Munich Center for Machine Learning Munich Data Science Institute Germany
The Neural Tangent Kernel (NTK) viewpoint is widely employed to analyze the training dynamics of overparameterized Physics-Informed Neural Networks (PINNs). However, unlike the case of linear Partial Differential Equa... 详细信息
来源: 评论
PDEFORMER: TOWARDS A FOUNDATION MODEL FOR ONE-DIMENSIONAL PARTIAL DIFFERENTIAL EQUATIONS
arXiv
收藏 引用
arXiv 2024年
作者: Ye, Zhanhong Huang, Xiang Chen, Leheng Liu, Hongsheng Wang, Zidong Dong, Bin Beijing International Center for Mathematical Research Peking University Beijing China Central Software Institute Huawei Technologies Co. Ltd Hangzhou China Beijing International Center for Mathematical Research The New Cornerstone Science Laboratory Peking University Beijing China Center for Machine Learning Research Peking University Beijing China
This paper introduces PDEformer, a neural solver for partial differential equations (PDEs) capable of simultaneously addressing various types of PDEs. We propose to represent the PDE in the form of a computational gra... 详细信息
来源: 评论
On the Origins of Linear Representations in Large Language Models
arXiv
收藏 引用
arXiv 2024年
作者: Jiang, Yibo Rajendran, Goutham Ravikumar, Pradeep Aragam, Bryon Veitch, Victor Department of Computer Science University of Chicago United States Machine Learning Department Carnegie Mellon University United States Booth School of Business University of Chicago United States Department of Statistics University of Chicago United States Data Science Institute University of Chicago United States
Recent works have argued that high-level semantic concepts are encoded "linearly" in the representation space of large language models. In this work, we study the origins of such linear representations. To t... 详细信息
来源: 评论
Weakly Supervised Panoptic Segmentation for Defect-Based Grading of Fresh Produce
arXiv
收藏 引用
arXiv 2024年
作者: Knott, Manuel Odion, Divinefavour Sontakke, Sameer Karwa, Anup Defraeye, Thijs Empa Swiss Federal Laboratories for Materials Science and Technology St. Gallen Switzerland Swiss Data Science Center ETH Zurich EPFL Switzerland Institute for Machine Learning Department of Computer Science ETH Zurich Switzerland Constructor University Bremen Germany Innoterra BioScience Private Limited Mumbai India
Visual inspection for defect grading in agricultural supply chains is crucial but traditionally labor-intensive and error-prone. Automated computer vision methods typically require extensively annotated datasets, whic... 详细信息
来源: 评论
Optical Character Recognition (OCR) in Handwritten Characters Using Convolutional Neural Networks to Assist in Exam Reader System  2
Optical Character Recognition (OCR) in Handwritten Character...
收藏 引用
2nd International Conference on Advancement in Computation and Computer Technologies, InCACCT 2024
作者: Lekshmy, P.L. Velmurugan, S. Kumari, Indra Kayalvili, S. Teja Sree, B. Karthik Kumar, P. LBS Institute of Technology for Women Department of Computer Science and Engineering Kerala India T.J.S. Engineering College Department of Electronics and Communication Engineering Tamil Nadu Chennai India Department of Machine Learning Data Research Applied AI Daejeon Korea Republic of Department of Artificial Intelligence Tamilnadu Erode India S.R.K.R. Engineering College Department of Information Technology Andhra Pradesh Chinaamiram Bhimavaram India Coimbatore India
This work aimed to develop a character recognition method to facilitate the correction of answer cards in the Multiprova software through the development of a response card analysis flow that would culminate in the re... 详细信息
来源: 评论
Adaptive Batch Sizes for Active learning: A Probabilistic Numerics Approach
arXiv
收藏 引用
arXiv 2023年
作者: Adachi, Masaki Hayakawa, Satoshi Jørgensen, Martin Wan, Xingchen Nguyen, Vu Oberhauser, Harald Osborne, Michael A. Machine Learning Research Group University of Oxford United Kingdom Mathematical Institute University of Oxford United Kingdom Toyota Motor Corporation Japan Department of Computer Science University of Helsinki Finland Amazon United States
Active learning parallelization is widely used, but typically relies on fixing the batch size throughout experimentation. This fixed approach is inefficient because of a dynamic trade-off between cost and speed—large... 详细信息
来源: 评论
DUO: Diverse, Uncertain, On-Policy Query Generation and Selection for Reinforcement learning from Human Feedback  39
DUO: Diverse, Uncertain, On-Policy Query Generation and Sele...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Feng, Xuening Jiang, Zhaohui Kaufmann, Timo Xu, Puchen Hüllermeier, Eyke Weng, Paul Zhu, Yifei UM-SJTU Joint Institute Shanghai Jiao Tong University Shanghai China Institute for Informatics LMU Munich Munich Germany Munich Center of Machine Learning Munich Germany German Research Center for Artificial Intelligence Germany Data Science Research Center Duke Kunshan University Kunshan China
Defining a reward function is usually a challenging but critical task for the system designer in reinforcement learning, especially when specifying complex behaviors. Reinforcement learning from human feedback (RLHF) ... 详细信息
来源: 评论
A duality framework for analyzing random feature and two-layer neural networks
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Hongrui Long, Jihao Wu, Lei Department of Mathematics Stanford University United States Institute for Advanced Algorithmic Research Shanghai China School of Mathematical Sciences Peking University China Center for Machine Learning Research Peking University China AI for Science Institute Beijing China
We consider the problem of learning functions within the Fp,π and Barron spaces, which play crucial roles in understanding random feature models (RFMs), two-layer neural networks, as well as kernel methods. Leveragin... 详细信息
来源: 评论
Quantization of Bandlimited Graph Signals
Quantization of Bandlimited Graph Signals
收藏 引用
International Conference on Sampling Theory and Applications (SampTA)
作者: Felix Krahmer He Lyu Rayan Saab Anna Veselovska Rongrong Wang Department of Mathematics & Munich Data Science Institute Technical University of Munich and Munich Center for Machine Learning Garching/Munich Germany Department of Mathematics & Halicioglu Data Science Institute University of California San Diego San Diego USA Department of Computational Mathematics Science and Engineering & Department of Mathematics Michigan State University East Lansing USA
Graph models and graph-based signals are becoming increasingly important in machine learning, natural sciences, and modern signal processing. In this paper, we address the problem of quantizing bandlimited graph signa...
来源: 评论