咨询与建议

限定检索结果

文献类型

  • 74 篇 会议
  • 18 篇 期刊文献

馆藏范围

  • 92 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 63 篇 工学
    • 41 篇 计算机科学与技术...
    • 38 篇 软件工程
    • 16 篇 生物工程
    • 12 篇 生物医学工程(可授...
    • 10 篇 机械工程
    • 9 篇 信息与通信工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 控制科学与工程
    • 4 篇 仪器科学与技术
    • 3 篇 电气工程
    • 2 篇 动力工程及工程热...
    • 2 篇 安全科学与工程
    • 1 篇 光学工程
    • 1 篇 化学工程与技术
  • 32 篇 理学
    • 22 篇 数学
    • 14 篇 生物学
    • 8 篇 统计学(可授理学、...
    • 3 篇 物理学
    • 3 篇 系统科学
    • 1 篇 化学
  • 17 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 8 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 6 篇 医学
    • 6 篇 临床医学
    • 5 篇 基础医学(可授医学...
    • 3 篇 公共卫生与预防医...
    • 3 篇 药学(可授医学、理...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 农学
    • 2 篇 作物学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 艺术学

主题

  • 12 篇 data models
  • 8 篇 feature extracti...
  • 7 篇 computational mo...
  • 7 篇 bayes methods
  • 6 篇 ubiquitous compu...
  • 5 篇 autism
  • 4 篇 bluetooth
  • 4 篇 optimization
  • 4 篇 media
  • 4 篇 blogs
  • 4 篇 entropy
  • 4 篇 diseases
  • 3 篇 indexes
  • 3 篇 hidden markov mo...
  • 3 篇 cameras
  • 3 篇 pragmatics
  • 3 篇 data mining
  • 3 篇 monitoring
  • 3 篇 electrocardiogra...
  • 3 篇 predictive model...

机构

  • 36 篇 centre for patte...
  • 21 篇 centre for patte...
  • 5 篇 centre for patte...
  • 3 篇 institute for fr...
  • 3 篇 department of el...
  • 3 篇 centre for patte...
  • 2 篇 centre for patte...
  • 2 篇 department of co...
  • 2 篇 centre of patter...
  • 2 篇 national ict aus...
  • 2 篇 deakin universit...
  • 2 篇 centre of patter...
  • 2 篇 computer science...
  • 2 篇 computer science...
  • 1 篇 pattern recognit...
  • 1 篇 department of ra...
  • 1 篇 public health un...
  • 1 篇 department of ph...
  • 1 篇 department of in...
  • 1 篇 centre of patter...

作者

  • 32 篇 venkatesh svetha
  • 26 篇 phung dinh
  • 26 篇 svetha venkatesh
  • 24 篇 dinh phung
  • 10 篇 gupta sunil
  • 10 篇 sunil gupta
  • 9 篇 tran truyen
  • 9 篇 rana santu
  • 8 篇 santu rana
  • 7 篇 nguyen tu dinh
  • 6 篇 le trung
  • 6 篇 vu nguyen
  • 6 篇 nguyen thuong
  • 5 篇 ognjen arandjelo...
  • 5 篇 thuong nguyen
  • 5 篇 nguyen thin
  • 4 篇 nguyen vu
  • 4 篇 chandan karmakar
  • 4 篇 bo dao
  • 4 篇 luo wei

语言

  • 92 篇 英文
检索条件"机构=the centre for Pattern Recognition and Data Analytics"
92 条 记 录,以下是81-90 订阅
排序:
Computer simulation based parameter selection for resistance exercise
Computer simulation based parameter selection for resistance...
收藏 引用
24th IASTED International Conference on Modelling and Simulation, MS 2013
作者: Arandjelović, Ognjen Centre for Pattern Recognition and Data Analytics Deakin University Geelong 3216 VIC Australia
In contrast to most scientific disciplines, sports science research has been characterized by comparatively little effort investment in the development of relevant phenomenologi-cal models. Scarcer yet is the applicat... 详细信息
来源: 评论
Extraction of Latent patterns and Contexts from Social Honest Signals Using Hierarchical Dirichlet Processes
Extraction of Latent Patterns and Contexts from Social Hones...
收藏 引用
IEEE International Conference on Pervasive Computing and Communications
作者: Thuong Nguyen Dinh Phung Sunil Gupta S. Venkatesh Centre for Pattern Recognition and Data Analytics Deakin University
A fundamental task in pervasive computing is reliable acquisition of contexts from sensor data. This is crucial to the operation of smart pervasive systems and services so that they might behave efficiently and approp... 详细信息
来源: 评论
Discriminative k-Means Clustering
Discriminative k-Means Clustering
收藏 引用
International Joint Conference on Neural Networks
作者: Ognjen Arandjelovi? Centre for Pattern Recognition and Data Analytics at Deakin University.
The k-means algorithm is a partitional clustering method. Over 60 years old, it has been successfully used for a variety of problems. The popularity of k-means is in large part a consequence of its simplicity and effi... 详细信息
来源: 评论
Interactive browsing system for anomaly video surveillance
Interactive browsing system for anomaly video surveillance
收藏 引用
Intelligent Sensors, Sensor Networks and Information Processing Conference (ISSNIP)
作者: Tien-Vu Nguyen Dinh Phung Sunil Gupta Svetha Venkatesh Centre for Pattern Recognition and Data Analytics (PRaDA) Deakin University Australia
Existing anomaly detection methods in video surveillance exhibit lack of congruence between rare events detected by algorithms and what is considered anomalous by users. This paper introduces a novel browsing model to... 详细信息
来源: 评论
Making the most of the self-quotient image in face recognition
Making the most of the self-quotient image in face recogniti...
收藏 引用
International Conference on Automatic Face and Gesture recognition
作者: Ognjen Arandjelović Centre for Pattern Recognition and Data Analytics Deakin University Geelong VIC Australia
The self-quotient image is a biologically inspired representation which has been proposed as an illumination invariant feature for automatic face recognition. Owing to the lack of strong domain specific assumptions un... 详细信息
来源: 评论
Exploiting side information in distance dependent Chinese restaurant processes for data clustering
Exploiting side information in distance dependent Chinese re...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Cheng Li Dinh Phung Santu Rana Svetha Venkatesh Centre for Pattern Recognition and Data Analytics (PRaDA) Deakin University Geelong Australia
Multimedia contents often possess weakly annotated data such as tags, links and interactions. The weakly annotated data is called side information. It is the auxiliary information of data and provides hints for explor... 详细信息
来源: 评论
A nonparametric Bayesian Poisson gamma model for count data
A nonparametric Bayesian Poisson gamma model for count data
收藏 引用
21st International Conference on pattern recognition, ICPR 2012
作者: Gupta, Sunil Kumar Phung, Dinh Venkatesh, Svetha Centre for Pattern Recognition and Data Analytics Deakin University Australia
We propose a nonparametric Bayesian, linear Poisson gamma model for count data and use it for dictionary learning. A key property of this model is that it captures the parts-based representation similar to nonnegative... 详细信息
来源: 评论
Matching objects across the textured-smooth continuum
Matching objects across the textured-smooth continuum
收藏 引用
2012 Australasian Conference on Robotics and Automation, ACRA 2012
作者: Arandjelović, Ognjen Centre for Pattern Recognition and Data Analytics Deakin University Geelong VIC 3220 Australia
The problem of 3D object recognition is of immense practical importance, with the last decade witnessing a number of breakthroughs in the state of the art. Most of the previous work has focused on the matching of text... 详细信息
来源: 评论
Multi-modal abnormality detection in video with unknown data segmentation
Multi-modal abnormality detection in video with unknown data...
收藏 引用
21st International Conference on pattern recognition, ICPR 2012
作者: Nguyen, Tien Vu Phung, Dinh Rana, Santu Pham, Duc Son Venkatesh, Svetha Centre for Pattern Recognition and Data Analytics Deakin University VIC Australia Department of Computing Curtin University WA Australia
This paper examines a new problem in large scale stream data: abnormality detection which is localized to a data segmentation process. Unlike traditional abnormality detection methods which typically build one unified... 详细信息
来源: 评论
A nonparametric Bayesian Poisson gamma model for count data
A nonparametric Bayesian Poisson gamma model for count data
收藏 引用
International Conference on pattern recognition
作者: Sunil Kumar Gupta Dinh Phung Svetha Venkatesh Centre for Pattern Recognition and Data Analytics Deakin University Australia
We propose a nonparametric Bayesian, linear Poisson gamma model for count data and use it for dictionary learning. A key property of this model is that it captures the parts-based representation similar to nonnegative... 详细信息
来源: 评论