版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Coll Engn Comp Sci & Engn Villupuram 605103 Tamil Nadu India SSN Coll Engn Comp Sci & Engn Kalavakkam Tamil Nadu India
出 版 物:《IET IMAGE PROCESSING》 (IET影像处理)
年 卷 期:2021年第15卷第5期
页 面:1093-1104页
核心收录:
学科分类:0808[工学-电气工程] 1002[医学-临床医学] 08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:Algebra Image recognition Computer vision and image processing techniques Combinatorial mathematics Algebra Combinatorial mathematics Information retrieval techniques
摘 要:Shape recognition and retrieval is a complex task on non-rigid objects and it can be effectively performed by using a set of compact shape descriptors. This paper presents a new technique for generating normalised contour points from shape silhouettes, which involves the identification of object contour from images and subsequently the object area normalisation (OAN) method is used to partition the object into equal part area segments with respect to shape centroid. Later, these contour points are used to derive six descriptors such as compact centroid distance (CCD), central angle (ANG), normalized points distance (NPD), centroid distance ratio (CDR), angular pattern descriptor (APD) and multi-triangle area representation (MTAR). These descriptors are a 1D shape feature vector which preserve contour and region information of the shapes. The performance of the proposed descriptors is evaluated on MPEG-7 Part-A, Part-B and multi-view curve dataset images. The present experiments are aimed to check proposed shape descriptor s robustness to affine invariance property and image retrieval performance. Comparative study has also been carried out for evaluating our approach with other state of the art approaches. The results show that image retrieval rate in OAN approach performs significantly better than that in other existing shape descriptors.