版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Sungkyunkwan Univ Dept Artificial Intelligence Suwon South Korea Sungkyunkwan Univ Dept Elect & Comp Engn Suwon South Korea Sangmyung Univ Dept Syst Semicond Engn Cheonan South Korea Korea Aerosp Res Inst Artificial Intelligence Res Div Daejeon South Korea Sungkyunkwan Univ Coll Informat & Commun Engn Suwon South Korea
出 版 物:《ELECTRONICS LETTERS》 (电子学快报)
年 卷 期:2021年第57卷第16期
页 面:611-613页
核心收录:
学科分类:0808[工学-电气工程] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学]
基 金:KARI Institutional Program NRF grant [2019R1F1A1048115] IITP grant - Ministry of Science and ICT (MSIT) of the Korea government [IITP-2019-0-00421]
主 题:Optical, image and video signal processing Aerospace control Mobile robots Computer vision and image processing techniques
摘 要:Aerial images obtained from autonomous aerial vehicles have lots of small and densely distributed objects because of the capture distance. This paper proposes a deep neural network architecture and training/inference techniques for robust detection of objects in the aerial images. Based on cascade R-CNN, the proposed model adopts the recursive feature pyramid and switchable atrous convolution for robust detection of dense objects. A patch-level division and multi-scale inference techniques are applied to effectively detect small objects. The results show that the proposed approach achieves the highest performance on the VisDrone test-dev dataset, in the official ECCV VisDrone2020-DET challenge.