版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Machine Learning and Human Language Technology Group Lehrstuhl Informatik 6 Computer Science Department RWTH Aachen University Germany AppTek GmbH Germany
出 版 物:《arXiv》 (arXiv)
年 卷 期:2024年
核心收录:
主 题:Adversarial machine learning
摘 要:In statistical classification/multiple hypothesis testing and machine learning, a model distribution estimated from the training data is usually applied to replace the unknown true distribution in the Bayes decision rule, which introduces a mismatch between the Bayes error and the model-based classification error. In this work, we derive the classification error bound to study the relationship between the Kullback-Leibler divergence and the classification error mismatch. We first reconsider the statistical bounds based on classification error mismatch derived in previous works, employing a different method of derivation. Then, motivated by the observation that the Bayes error is typically low in machine learning tasks like speech recognition and pattern recognition, we derive a refined Kullback-Leibler-divergence-based bound on the error mismatch with the constraint that the Bayes error is lower than a threshold. Copyright © 2024, The Authors. All rights reserved.