咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Predictive Methods and Probabi... 收藏

Predictive Methods and Probabilistic Mapping of Subcortical Brain Components in Fossil Carnivora

作     者:Baer, Emily Nguyen, Phuoc D. Lilly, Stefan Song, Jiyoon Yee, Mathew Matz, Olivia Sahasrabudhe, Rachna Hall, Douglas R. La, Susan Merritt, Brandon J. Mahesh, Pallavi Eliacin, Christelle Bitterman, Kathleen Oddes, Demi Bertelsen, Mads F. Tang, Cheuk Y. Cook, Peter F. Mars, Rogier B. Hof, Patrick R. Dunn, Rachel Manger, Paul R. Sherwood, Chet C. Spocter, Muhammad A. 

作者机构:Des Moines Univ Dept Anat W Des Moines IA 50266 USA Univ Witwatersrand Fac Hlth Sci Sch Anat Sci Johannesburg South Africa Copenhagen Zoo Ctr Zoo & Wild Anim Hlth Frederiksberg Denmark Icahn Sch Med Mt Sinai Dept Radiol New York NY USA Icahn Sch Med Mt Sinai Dept Psychiat New York NY USA Icahn Sch Med Mt Sinai Biomed & Engn Imaging Inst New York NY USA New Coll Florida Florida Inst Marine Mammal Sci Sarasota FL 34243 USA Univ Oxford Wellcome Ctr Integrat Neuroimaging Nuffield Dept Clin Neurosci FMRIB Oxford England Radboud Univ Nijmegen Donders Inst Brain Cognit & Behav Nijmegen Netherlands Icahn Sch Med Mt Sinai Nash Family Dept Neurosci New York NY USA Icahn Sch Med Mt Sinai Friedman Brain Inst New York NY USA Icahn Sch Med Mt Sinai Ctr Discovery & Innovat New York NY USA New York Consortium Evolutionary Primatol New York NY USA George Washington Univ Dept Anthropol Washington DC USA George Washington Univ Ctr Adv Study Human Paleobiol Washington DC USA Iowa State Univ Coll Vet Med Dept Biomed Sci Ames IA 50011 USA 

出 版 物:《JOURNAL OF COMPARATIVE NEUROLOGY》 (J. Comp. Neurol.)

年 卷 期:2025年第533卷第1期

页      面:e70014页

核心收录:

学科分类:0710[理学-生物学] 1001[医学-基础医学(可授医学、理学学位)] 07[理学] 071003[理学-生理学] 

基  金:Carnegie Foundation 

主  题:brain Carnivora evolution fossils prediction probabilistic simulation 

摘      要:Paleoneurology reconstructs the evolutionary history of nervous systems through direct observations from the fossil record and comparative data from extant species. Although this approach can provide direct evidence of phylogenetic links among species, it is constrained by the availability and quality of data that can be gleaned from the fossil record. Here, we sought to translate brain component relationships in a sample of extant Carnivora to make inferences about brain structure in fossil species. Using high resolution magnetic resonance imaging on extant canids and felids and 3D laser scanning on fossil Carnivora, spanning some 40 million years of evolution, we derived measurements for select brain components. From these primary data, predictive equations of cortical (gray matter mass, cortical thickness, and gyrification index) and subcortical structures (caudate nucleus, putamen, and external globus pallidus mass) were used to derive estimates for select fossil Carnivora. We found that regression equations based on both extant and simulation samples provided moderate to high predictability of subcortical masses for fossil Carnivora. We also found that using exploratory probabilistic mapping of subcortical structures in extant Carnivora, a reasonable prediction could be made of the 3D subcortical morphospace of fossil endocasts. These results identify allometric departures and establish adult species ranges in brain component size for fossil species. The integrative approach taken in this study may serve as a model to promote further dialog between neurobiologists working on extant Carnivora models and paleoneurologists describing the nervous system of fossils from this understudied group of mammals.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分