咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Overview of the Head and Neck ... 收藏
arXiv

Overview of the Head and Neck Tumor Segmentation for Magnetic Resonance Guided Applications (HNTS-MRG) 2024 Challenge

作     者:Wahid, Kareem A. Dede, Cem El-Habashy, Dina M. Kamel, Serageldin Rooney, Michael K. Khamis, Yomna Abdelaal, Moamen R.A. Ahmed, Sara Corrigan, Kelsey L. Chang, Enoch Dudzinski, Stephanie O. Salzillo, Travis C. McDonald, Brigid A. Mulder, Samuel L. McCullum, Lucas Alakayleh, Qusai Sjogreen, Carlos He, Renjie Mohamed, Abdallah S.R. Lai, Stephen Y. Christodouleas, John P. Schaefer, Andrew J. Naser, Mohamed A. Fuller, Clifton D. 

作者机构:Department of Radiation Oncology The University of Texas MD Anderson Cancer HoustonTX United States Department of Imaging Physics The University of Texas MD Anderson Cancer HoustonTX United States Transitional Year Program Corewell Health Wiliam Beaumont Royal OakMI United States Department of Radiation Oncology University of Maryland School of Medicine BaltimoreMD United States Department of Clinical Oncology and Nuclear Medicine Faculty of Medicine Alexandria University Alexandria Egypt UT MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences Houston United States Department of Radiation Oncology Baylor College of Medicine HoustonTX United States Department of Head and Neck Surgery The University of Texas MD Anderson Cancer HoustonTX United States Elekta AtlantaGA United States Department of Computational Applied Mathematics and Operations Research Rice University HoustonTX United States 

出 版 物:《arXiv》 (arXiv)

年 卷 期:2024年

核心收录:

主  题:Magnetic resonance imaging 

摘      要:Magnetic resonance (MR)-guided radiation therapy (RT) is enhancing head and neck cancer (HNC) treatment through superior soft tissue contrast and longitudinal imaging capabilities. However, manual tumor segmentation remains a significant challenge, spurring interest in artificial intelligence (AI)-driven automation. To accelerate innovation in this field, we present the Head and Neck Tumor Segmentation for MR-Guided Applications (HNTS-MRG) 2024 Challenge, a satellite event of the 27th International Conference on Medical Image Computing and Computer Assisted Intervention. This challenge addresses the scarcity of large, publicly available AI-ready adaptive RT datasets in HNC and explores the potential of incorporating multi-timepoint data to enhance RT auto-segmentation performance. Participants tackled two HNC segmentation tasks: automatic delineation of primary gross tumor volume (GTVp) and gross metastatic regional lymph nodes (GTVn) on pre-RT (Task 1) and mid-RT (Task 2) T2-weighted scans. The challenge provided 150 HNC cases for training and 50 for testing, hosted on *** using a Docker submission framework. In total, 19 independent teams from across the world qualified by submitting both their algorithms and corresponding papers, resulting in 18 submissions for Task 1 and 15 submissions for Task 2. Evaluation using the mean aggregated Dice Similarity Coefficient showed top-performing AI methods achieved scores of 0.825 in Task 1 and 0.733 in Task 2. These results surpassed clinician interobserver variability benchmarks, marking significant strides in automated tumor segmentation for MR-guided RT applications in HNC. © 2024, CC BY.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分