版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Chongqing Univ Technol Sch Artificial Intelligence Chongqing Peoples R China
出 版 物:《NONDESTRUCTIVE TESTING AND EVALUATION》 (Nondestr Test Eval)
年 卷 期:2025年
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)]
基 金:National Natural Science Foundation of China Chongqing Natural Science Foundation [CSTB2022NSCQ-MSX0933] Science and Technology Foundation of Chongqing Education Commission [KJQN202201144]
主 题:Convolutional neural network deformable convolution network GSConv High-level Screening-feature Pyramid Networks RCS-OSA Fabric defect detection
摘 要:Fabric defect detection is crucial for quality control in fabric manufacturing but remains a challenge due to the multi-scale characteristics of defects and their integration with the fabric background. To address this, we propose an efficient fabric defect detection model, DGHR-YOLO. First, the deformable convolution block (DCB) is introduced into the backbone network, leveraging its dynamic receptive field to effectively capture defect morphology and enhance feature extraction. Secondly, we propose the GS-SPPF module, designed to mitigate semantic information loss, optimize feature fusion, and improve both accuracy and inference speed. Thirdly, a lightweight High-level Screening Feature Pyramid Network (HS-FPN) is introduced, enabling effective multi-scale feature fusion while maintaining low complexity. Finally, a one-shot aggregation module based on channel shuffle and re-parameterized convolution is introduced, enhancing feature interaction across scales. Experimental results on the Tianchi textile dataset demonstrate that DGHR-YOLO achieves mAP0.5 and mAP0.5:0.95 scores of 85.8% and 72.7%, with respective improvements of 2.7% and 3.8% over YOLOv8m, while maintaining low parameter count and computational complexity.