咨询与建议

限定检索结果

文献类型

  • 146 篇 期刊文献
  • 76 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 224 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 213 篇 工学
    • 98 篇 计算机科学与技术...
    • 75 篇 电气工程
    • 57 篇 材料科学与工程(可...
    • 48 篇 纺织科学与工程
    • 35 篇 控制科学与工程
    • 31 篇 软件工程
    • 23 篇 仪器科学与技术
    • 21 篇 信息与通信工程
    • 16 篇 机械工程
    • 8 篇 电子科学与技术(可...
    • 4 篇 光学工程
    • 3 篇 动力工程及工程热...
    • 3 篇 化学工程与技术
    • 2 篇 力学(可授工学、理...
    • 2 篇 网络空间安全
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 环境科学与工程(可...
  • 26 篇 理学
    • 13 篇 物理学
    • 11 篇 化学
    • 8 篇 生物学
    • 2 篇 数学
  • 13 篇 医学
    • 13 篇 临床医学
  • 9 篇 管理学
    • 9 篇 管理科学与工程(可...
  • 2 篇 农学
  • 2 篇 艺术学
    • 2 篇 设计学(可授艺术学...

主题

  • 224 篇 fabric defect de...
  • 33 篇 deep learning
  • 15 篇 fabrics
  • 14 篇 image segmentati...
  • 14 篇 feature extracti...
  • 12 篇 convolutional ne...
  • 11 篇 object detection
  • 11 篇 image processing
  • 10 篇 attention mechan...
  • 10 篇 computer vision
  • 10 篇 unsupervised lea...
  • 7 篇 inspection
  • 6 篇 machine vision
  • 5 篇 image fusion
  • 5 篇 semantic segment...
  • 5 篇 anomaly detectio...
  • 5 篇 yolov8
  • 5 篇 generative adver...
  • 5 篇 genetic algorith...
  • 5 篇 convolutional ne...

机构

  • 7 篇 zhongyuan univ t...
  • 6 篇 xian polytech un...
  • 5 篇 donghua univ col...
  • 5 篇 minist educ key ...
  • 4 篇 donghua univ sch...
  • 4 篇 zhongyuan univ t...
  • 4 篇 shenzhen univ co...
  • 3 篇 beijing inst tec...
  • 3 篇 xian polytech un...
  • 3 篇 guangdong key la...
  • 3 篇 xian polytech un...
  • 3 篇 xian polytech un...
  • 3 篇 changzhou univ s...
  • 2 篇 donghua univ col...
  • 2 篇 xian polytech un...
  • 2 篇 hong kong polyte...
  • 2 篇 shenzhen inst ar...
  • 2 篇 zhejiang sci tec...
  • 2 篇 beijing inst fas...
  • 2 篇 hefei univ techn...

作者

  • 13 篇 li chunlei
  • 12 篇 liu zhoufeng
  • 6 篇 jing junfeng
  • 6 篇 zhou jian
  • 6 篇 wang jun
  • 5 篇 lu shuai
  • 5 篇 liang jiuzhen
  • 4 篇 deng na
  • 4 篇 zhou jie
  • 4 篇 dong yan
  • 4 篇 xin binjie
  • 4 篇 gao can
  • 4 篇 zhang hongwei
  • 4 篇 fan mingzhu
  • 4 篇 zhu runhu
  • 4 篇 tian bo
  • 3 篇 sayed mohammed s...
  • 3 篇 liu hao
  • 3 篇 sabeenian r. s.
  • 3 篇 talu muhammed fa...

语言

  • 214 篇 英文
  • 4 篇 其他
  • 3 篇 土耳其文
  • 3 篇 中文
检索条件"主题词=Fabric defect detection"
224 条 记 录,以下是1-10 订阅
排序:
Phased Noise Enhanced Multiple Feature Discrimination Network for fabric defect detection
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2025年 149卷
作者: Ma, Haoran Li, Zuoyong Fan, Haoyi Zheng, Xiangpan Yan, Jiaquan Hu, Rong Fujian Univ Technol Sch Comp Sci & Math Fujian Prov Key Lab Big Data Min & Applicat Fuzhou 350118 Peoples R China Minjiang Univ Sch Comp & Big Data Fujian Prov Key Lab Informat Proc & Intelligent Co Fuzhou 350121 Peoples R China Zhengzhou Univ Sch Comp & Artificial Intelligence Zhengzhou 450001 Peoples R China Minjiang Univ Coll Phys & Elect Informat Engn Fuzhou 350121 Peoples R China Wuyi Univ Key Lab Cognit Comp & Intelligent Informat Proc Fujian Educ Inst Wuyishan 354300 Peoples R China
fabric defect detection is crucial for evaluating the quality of textile products. However, the subtlety and scarcity of fabric defects pose challenges to the task of detecting. Therefore, we propose a Phased Noise En... 详细信息
来源: 评论
Enhanced fabric defect detection With Feature Contrast Interference Suppression
收藏 引用
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2025年 74卷
作者: Wang, Jinbao Cheng, Jiayi Gao, Can Zhou, Jie Shen, Linlin Shenzhen Univ Natl Engn Lab Big Data Syst Comp Technol Shenzhen 518060 Peoples R China Shenzhen Univ Coll Comp Sci & Software Engn Shenzhen Peoples R China Shenzhen Univ Shenzhen Inst Artificial Intelligence & Robot Soc Shenzhen 518060 Peoples R China Guangdong Key Lab Intelligent Informat Proc Shenzhen 518060 Peoples R China
Detecting fabric defects is a critical task in the textile industry, as it involves identifying and localizing imperfections in fabrics. However, many existing unsupervised defect detection methods are sensitive to va... 详细信息
来源: 评论
DF-YOLO: An attempt on enhancing generalization in fabric defect detection based on YOLO network
收藏 引用
TEXTILE RESEARCH JOURNAL 2025年 第7-8期95卷 748-766页
作者: Gu, Mengshang Zhou, Jian Pan, Ruru Gao, Weidong Jiangnan Univ Key Lab Ecotext Wuxi Peoples R China
This article introduces Domain-fusion YOLO (DF-YOLO), a novel object detection network enhancing YOLOv5 series networks' generalizability, particularly in fabric defect detection. DF-YOLO incorporates a unique fea... 详细信息
来源: 评论
A Real-Time fabric defect detection Method Based on Improved YOLOv8
收藏 引用
APPLIED SCIENCES-BASEL 2025年 第6期15卷 3228-3228页
作者: Jin, Yanxia Liu, Xinyu Nan, Keliang Wang, Songsong Wang, Ting Zhang, Zhuangwei Zhang, Xiaozhu North Univ China Sch Comp Sci & Technol Taiyuan 030051 Peoples R China
fabric defect detection is a crucial step in ensuring product quality within the textile industry. However, current detection methods face challenges in processing efficiency for high-resolution images, detail recover... 详细信息
来源: 评论
Open-Set fabric defect detection With defect Generation and Transfer
收藏 引用
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2025年 74卷
作者: Gao, Can Chen, Xiujian Zhou, Jie Wang, Jinbao Shen, Linlin Shenzhen Univ Coll Comp Sci & Software Engn Shenzhen 518060 Peoples R China Guangdong Key Lab Intelligent Informat Proc Shenzhen 518060 Peoples R China Shenzhen Univ Natl Engn Lab Big Data Syst Comp Technol Shenzhen 518060 Peoples R China
fabric defect detection is indispensable but challenging due to the diversity of fabric texture and defect types in textile mills, and a variety of deep learning-based supervised methods have been introduced to defect... 详细信息
来源: 评论
Semi-supervised Lightweight fabric defect detection  7th
Semi-supervised Lightweight Fabric Defect Detection
收藏 引用
7th Chinese Conference on Pattern Recognition and Computer Vision
作者: Dong, Xiaoliang Liu, Hao Luo, Yuexin Yan, Yubao Liang, Jiuzhen Changzhou Univ Changzhou 213164 Peoples R China
fabric defect detection can greatly enhance the quality of fabric production. However, the high cost of annotating defects and the computational complexity of networks are the main challenges in defect detection. To a... 详细信息
来源: 评论
DGHR-YOLO: fabric defect detection based on High-level Screening -feature Pyramid Networks and deformable convolution
收藏 引用
NONDESTRUCTIVE TESTING AND EVALUATION 2025年
作者: Zhang, Zhixing Huang, Tongyuan Zhang, Weifeng Yang, Yihan Yu, Qianjiang Chongqing Univ Technol Sch Artificial Intelligence Chongqing Peoples R China
fabric defect detection is crucial for quality control in fabric manufacturing but remains a challenge due to the multi-scale characteristics of defects and their integration with the fabric background. To address thi... 详细信息
来源: 评论
A study on lightweight algorithms for fabric defect detection
收藏 引用
TEXTILE RESEARCH JOURNAL 2025年
作者: Dai, Ning Hu, Xiaohan Xu, Kaixin Hu, Xudong Yuan, Yanhong Xu, Yushan Zhejiang Sci Tech Univ 928 2nd St Xiasha Higher Educ Pk Hangzhou 310018 Peoples R China Zhejiang Kangli Automat Technol Co Ltd Hangzhou Peoples R China
In industrial applications where device capacity, computational performance, and thermal management are limited, we propose the YOLOvT-Light model for fabric defect detection. This model incorporates the convolutional... 详细信息
来源: 评论
fabric defect detection via feature fusion and total variation regularized low-rank decomposition
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2023年 第1期83卷 609-633页
作者: Zhao, Hongling Wang, Junpu Li, Chunlei Liu, Pengcheng Yang, Ruimin ZhengZhou Univ Coll Distance Learning Zhengzhou 450007 Peoples R China Nanjing Univ Aeronaut & Astronaut Coll Automat Engn Nanjing 211106 Peoples R China Zhongyuan Univ Technol Sch Elect & Informat Engn Zhengzhou 450007 Peoples R China Univ York Dept Comp Sci York YO105DD England
fabric defect detection plays a key role in quality control for textile products. Existing methods based on traditional image processing techniques suffer from low detection accuracy and poor adaptability. The low-ran... 详细信息
来源: 评论
fabric defect detection Based on Biological Vision Modeling
收藏 引用
IEEE ACCESS 2018年 6卷 27659-27670页
作者: Li, Chunlei Gao, Guangshuai Liu, Zhoufeng Yu, Miao Huang, Di Zhongyuan Univ Technol Sch Elect & Informat Engn Zhengzhou 450007 Henan Peoples R China Beihang Univ Sch Comp Sci & Engn Beijing 100191 Peoples R China
fabric defect detection plays a key role in the quality control of textiles. Existing fabric defect detection methods adopt traditional pattern recognition methods;however, these methods lack adaptability and present ... 详细信息
来源: 评论