版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:NHLBI Lab Mol Immunol NIH Bethesda MD 20892 USA Univ Texas Dallas Dept Comp Sci Richardson TX 75080 USA
出 版 物:《DISCRETE APPLIED MATHEMATICS》 (离散应用数学)
年 卷 期:2009年第157卷第5期
页 面:960-970页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:National Science Foundation [CCR-9820902]
主 题:Spanning trees Minimum spanning trees Approximation algorithm Geometric optimization Network design
摘 要:Given n points in the Euclidean plane, the degree-A minimum spanning tree (MST) problem asks for a spanning tree of minimum weight in which the degree of each vertex is at most delta. The problem is NP-hard for 2 = delta = 3, while the NP-hardness of the problem is open for delta = 4. The problem is polynomial-time solvable when delta = 5. By presenting an improved approximation analysis for Chan s degree-4 MST algorithm [T. Chan, Euclidean bounded-degree spanning tree ratios, Discrete & Computational Geometry 32 (2004) 177-194], we show that, for any arbitrary collection of points in the Euclidean plane, there always exists a degree-4 spanning tree of weight at most (root 2 + 2)/3 1.1381 times the weight of an MST. Published by Elsevier B.V.