版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Massachusetts Dept Chem Amherst MA 01003 USA Univ Calgary McCaig Inst Bone & Joint Hlth Dept Biochem & Mol Biol Calgary AB Canada
出 版 物:《ACS NANO》 (ACS纳米)
年 卷 期:2012年第6卷第9期
页 面:8233-8240页
核心收录:
学科分类:07[理学] 070203[理学-原子与分子物理] 0805[工学-材料科学与工程(可授工学、理学学位)] 0703[理学-化学] 0702[理学-物理学]
基 金:NIH [GM077173] Canadian Cancer Society Research Institute Canada Research Chairs award
主 题:array-based sensing metastasis tissue lysates gold nanoparticle
摘 要:Rapid and sensitive methods of discriminating between healthy tissue and metastases are critical for predicting disease course and designing therapeutic strategies. We report here the use of an array of gold nanoparticle-green fluorescent protein elements to rapidly detect metastatic cancer cells (in minutes), as well as to discriminate between organ-specific metastases and their corresponding normal tissues through their overall intracellular proteome signatures. Metastases established in a new preclinical non-small-cell lung cancer metastasis model in athymic mice were used to provide a challenging and realistic testbed for clinical cancer diagnosis. Full differentiation between the analyte cell/tissue was achieved with as little as 200 ng of intracellular protein (similar to 1000 cells) for each nanoparticle, indicating high sensitivity of this sensor array. Notably, the sensor created a distinct fingerprint pattern for the normal and metastatic tumor tissues. Moreover, this array-based approach is unbiased, precluding the requirement of a priori knowledge of the disease biomarkers. Taken together, these studies demonstrate the utility of this sensor for creating fingerprints of cells and tissues in different states and present a generalizable platform for rapid screening amenable to microbiopsy samples.