版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Fed Sao Paulo BR-12231280 Sao Jose Dos Campos SP Brazil Univ Sao Paulo BR-13560970 Sao Carlos SP Brazil Univ Kent Canterbury CT2 7NF Kent England
出 版 物:《INFORMATION SCIENCES》 (信息科学)
年 卷 期:2014年第258卷
页 面:160-181页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)
主 题:Decision tree Lexicographic optimization Machine learning Multi-objective evolutionary algorithm
摘 要:Decision tree induction algorithms represent one of the most popular techniques for dealing with classification problems. However, traditional decision-tree induction algorithms implement a greedy approach for node splitting that is inherently susceptible to local optima convergence. Evolutionary algorithms can avoid the problems associated with a greedy search and have been successfully employed to the induction of decision trees. Previously, we proposed a lexicographic multi-objective genetic algorithm for decision-tree induction, named LEGAL-Tree. In this work, we propose extending this approach substantially, particularly w.r.t. two important evolutionary aspects: the initialization of the population and the fitness function. We carry out a comprehensive set of experiments to validate our extended algorithm. The experimental results suggest that it is able to outperform both traditional algorithms for decision-tree induction and another evolutionary algorithm in a variety of application domains. (C) 2013 Elsevier Inc. All rights reserved.