咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >The numerical reckoning of mod... 收藏

The numerical reckoning of modified proximal point methods for minimization problems in non-positive curvature metric spaces

作     者:Thounthong, Phatiphat Pakkaranang, Nuttapol Cho, Yeol Je Kumam, Wiyada Kumam, Poom 

作者机构:KMUTNB Fac Tech Educ Renewable Energy Res Ctr Bangkok Thailand KMUTNB Fac Tech Educ Dept Teacher Training Elect Engn Bangkok Thailand KMUTT Fixed Point Res Lab Dept Math Fac Sci Room SCL 802Sci Lab Bldg126 Pracha Uthit Rd Bangkok 10140 Thailand KMUTT Theoret & Computat Sci Ctr TaCS Fac Sci Sci Lab Bldg126 Pracha Uthit Rd Bangkok 10140 Thailand Gyeongsang Natl Univ Dept Math Educ Jinju South Korea Univ Elect Sci & Technol China Sch Math Sci Chengdu Sichuan Peoples R China Rajamangala Univ Technol Thanyaburi RMUTT Fac Sci & Technol Dept Math & Comp Sci Program Appl Stat Pathum Thani Thailand China Med Univ China Med Univ Hosp Dept Med Res Taichung Taiwan 

出 版 物:《INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS》 (国际计算机数学杂志)

年 卷 期:2020年第97卷第1-2期

页      面:245-262页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:King Mongkut's University of Technology Thonburi, KMUTT King Mongkut's University of Technology North Bangkok, KMUTNB, (KMUTNB-61-GOV-D-68) Rajamangala University of Technology Thanyaburi, RMUTT Faculty of Science, Prince of Songkla University 

主  题:CAT(0) spaces proximal point algorithm iterative method nonexapnsive mappings convex minimization problem 

摘      要:In this paper, we introduce a new modified proximal point algorithm for nonexpansive mappings in non-positive curvature metric spaces and also we prove the sequence generated by the proposed algorithms converges to a common solution between minimization problem and fixed point problem. Moreover, we give some numerical examples to illustrate our main results, that is, our algorithm is more efficient than the algorithm of Cholamjiak et al. and others.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分