咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Fitting fractal surfaces on no... 收藏

Fitting fractal surfaces on non-rectangular grids

非矩形的格子上的恰当的分数维的表面

作     者:Navascues, M. A. Sebastian, M. V. 

作者机构:Univ Zaragoza Dept Matemat Aplicada Ctr Politecn Super Ingn Zaragoza 50018 Spain Univ Zaragoza Dept Matemat Aplicada Escuela Univ Ingn Tecn Ind Zaragoza 50018 Spain 

出 版 物:《FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY》 (分数;自然复几何多学科杂志)

年 卷 期:2008年第16卷第2期

页      面:151-158页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:MiPA MURST 

主  题:fractal interpolation functions Legendre polynomials multivariant polynomial approximation 

摘      要:In a complex society, the visualization and interpretation of large amounts of data acquires an increasing importance. This can be done at once by means of two- or three-dimensional maps. To approach this problem, we undertake the construction of several variable fractal functions. In the first place, we introduce real fractal functions defined as perturbations of the classical ones. These basic mappings allow us to compute multidimensional approximations of experimental variables by means of linear combinations of products of fractal functions of Legendre type. The paper proposes a method of non-smooth representation for a large number of three-dimensional data on non-uniform grids. The procedures described are applied in the last part of the paper to the implementation of fitting maps for brain electrical activity.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分