咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Detection of seizures in EEG u... 收藏

Detection of seizures in EEG using subband nonlinear parameters and genetic algorithm

在用 subband 的 EEG 的发作的察觉非线性的参数和基因算法

作     者:Hsu, Kai-Cheng Yu, Sung-Nien 

作者机构:Hsu Kai Cheng Neurol Clin Chiayi Cty Taiwan 

出 版 物:《COMPUTERS IN BIOLOGY AND MEDICINE》 (生物学与医学中的计算机)

年 卷 期:2010年第40卷第10期

页      面:823-830页

核心收录:

学科分类:0831[工学-生物医学工程(可授工学、理学、医学学位)] 0710[理学-生物学] 07[理学] 09[农学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:Seizure Discrete wavelet transform Nonlinear parameters Support vector machine Genetic algorithm 

摘      要:Detection of seizures in EEG can be challenging because of myogenic artifacts and might be time-consuming. In this study, we propose a method using subband nonlinear parameters and genetic algorithm for automatic seizure detection in EEG. In the experiment, the discrete wavelet transform was used to decompose EEG into five subband components. Nonlinear parameters were extracted and employed as the features to train the support vector machine with linear kernel function (SVML) and radial basis function kernel function (SVMRBF) classifiers. A genetic algorithm (GA) was used for selecting the effective feature subset. The seizure detection sensitivities of the SVML and the SVMRBF with GA are 90.8% and 94.0%, respectively. The sensitivity of SVMRBF increases to 95.8% by using GA for weight adjustment. Moreover, the proposed method is capable of discriminating the interictal EEG of epileptic subjects from the normal EEG, which is considered difficult, yet crucial, in clinical services. (C) 2010 Elsevier Ltd. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分