版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Hsu Kai Cheng Neurol Clin Chiayi Cty Taiwan
出 版 物:《COMPUTERS IN BIOLOGY AND MEDICINE》 (生物学与医学中的计算机)
年 卷 期:2010年第40卷第10期
页 面:823-830页
核心收录:
学科分类:0831[工学-生物医学工程(可授工学、理学、医学学位)] 0710[理学-生物学] 07[理学] 09[农学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:Seizure Discrete wavelet transform Nonlinear parameters Support vector machine Genetic algorithm
摘 要:Detection of seizures in EEG can be challenging because of myogenic artifacts and might be time-consuming. In this study, we propose a method using subband nonlinear parameters and genetic algorithm for automatic seizure detection in EEG. In the experiment, the discrete wavelet transform was used to decompose EEG into five subband components. Nonlinear parameters were extracted and employed as the features to train the support vector machine with linear kernel function (SVML) and radial basis function kernel function (SVMRBF) classifiers. A genetic algorithm (GA) was used for selecting the effective feature subset. The seizure detection sensitivities of the SVML and the SVMRBF with GA are 90.8% and 94.0%, respectively. The sensitivity of SVMRBF increases to 95.8% by using GA for weight adjustment. Moreover, the proposed method is capable of discriminating the interictal EEG of epileptic subjects from the normal EEG, which is considered difficult, yet crucial, in clinical services. (C) 2010 Elsevier Ltd. All rights reserved.