版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:East China Normal Univ Shanghai Peoples R China East China Normal Univ Sch Comp Sci & Software Engn Shanghai Peoples R China East China Normal Univ Natl Trusted Embedded Software Engn Technol Res C Shanghai Peoples R China
出 版 物:《SENSOR REVIEW》 (传感器评论)
年 卷 期:2020年第40卷第1期
页 面:121-129页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 08[工学] 0804[工学-仪器科学与技术]
主 题:Array optimization Magnetic gradient tensor system Magnetic localization Sensor array
摘 要:Purpose The differential magnetic gradient tensor system is usually constructed from the three-axis magnetic sensor array. While the effects of measurement error, sensor performance and baseline distance on localization performance of such systems have been widely reported, the research about the effect of spatial design of sensor array is less presented. This paper aims to provide a spatial design method of sensor array and corresponding optimization strategy to localization based on magnetic tensor gradient to get the optimum design of the sensor array. Based on the results of simulation, magnetic localization systems constructed from the proposed array and the traditional array have been built to carry out a localization experiment. The results of experiment have verified the effectiveness of magnetic localization based on the proposed array. Design/methodology/approach The authors focus on the localization of the magnetic target based on magnetic gradient by using three-axis magnetic sensor array and combine a design method with corresponding optimization strategy to get the optimum design of the sensor array. Findings This paper provides an array design and optimization method for magnetic target localization based on magnetic gradient to improve the localization performance. Originality/value In this paper, the authors focus on the magnetic localization based on magnetic gradient by using three-axis magnetic sensors and study the effect of the spatial design of sensor array on localization performance.