咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Improving BDD Enumeration for ... 收藏

Improving BDD Enumeration for LWE Problem Using GPU

作     者:Esseissah, Mohamed S. Bhery, Ashraf Bahig, Hatem M. 

作者机构:Ain Shams Univ Fac Sci Math Dept Comp Sci Div Cairo 11566 Egypt 

出 版 物:《IEEE ACCESS》 (IEEE Access)

年 卷 期:2020年第8卷

页      面:19737-19749页

核心收录:

主  题:Learning with error lattice-based cryptography LLL algorithm shortest vector problem closest vector problem bounded distance decoding GPU cryptanalysis 

摘      要:In this paper, we present a GPU-based parallel algorithm for the Learning With Errors (LWE) problem using a lattice-based Bounded Distance Decoding (BDD) approach. To the best of our knowledge, this is the first GPU-based implementation for the LWE problem. Compared to the sequential BDD implementation of Lindner-Peikert and pruned-enumeration strategies by Kirshanova [1], our GPU-based implementation is almost faster by a factor 6 and 9 respectively. The used GPU is NVIDIA GeForce GTX 1060 6G. We also provided a parallel implementation using two GPUs. The results showed that our algorithm is scalable and faster than the sequential version (Lindner-Peikert and pruned-enumeration) by a factor of almost 13 and 16 respectively. Moreover, the results showed that our parallel implementation using two GPUs is more efficient than Kirshanova et al. s parallel implementation using 20 CPU-cores.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分