The parallel medicinal chemistry (PMC) was effectively applied to accelerate the optimization of diacylglycerol O-acyltransferase I (DGAT-1) inhibitors. Through a highly collaborative and iterative library design, syn...
详细信息
The parallel medicinal chemistry (PMC) was effectively applied to accelerate the optimization of diacylglycerol O-acyltransferase I (DGAT-1) inhibitors. Through a highly collaborative and iterative library design, synthesis and testing, a benzimidazole lead was rapidly and systematically advanced to a highly potent, selective and bioavailable DGAT1 inhibitor with the potential for further development.
Walnut green husk polysaccharides (WGP) are isolated from the walnut green husk with a mean molecular weight of 12.77 kDa. The structural characterization revealed by methylation and NMR analysis indicated that WGP mi...
详细信息
Walnut green husk polysaccharides (WGP) are isolated from the walnut green husk with a mean molecular weight of 12.77 kDa. The structural characterization revealed by methylation and NMR analysis indicated that WGP might consist of -> 4-alpha-D-Galp-(1 ->, alpha-D-Galp (1 ->, and -> 2)-alpha-L-Rhap-(1 ->. Previous studies have been demonstrated that WGP effectively prevented liver injury and modulated gut microbiota in high fructose-treated mice and high fat diet-treated rats. In this study, we found for the first time that WGP presenting outstanding protective effects on liver inflammation and gluconeogenesis dysfunction induced by ochratoxin A (OTA) in mice. Firstly, WGP decreased oxidative stress, down-regulated the expression of inflammatory factors and inhibited the TLR4/p65/I kappa B alpha pathway in the liver. Then, WGP reversed OTA-induced lower phosphoenolpyruvate carboxyl kinase (PEPCK), and glucose 6-phosphatase (G6PC) activities in the liver. Furthermore, WGP increased the diversity of gut microbiota and the abundance of beneficial bacteria, especially Lactobacillus and Akkermansia. Importantly, the results of fecal microbiota transplantation (FMT) experiment further confirmed that gut microbiota involved in the protective effects of WGP on liver damage induced by OTA. Our results indicated that the protective effect of WGP on liver inflammation and gluconeogenesis dysfunction caused by OTA may be due to the regulation of gut microbiota.
Fluorescent whitening agents (FWAs) are very important chemical additives that are widely applied in the industrial production field. The history of global FWA production and use spans more than 60 years, but the envi...
详细信息
Fluorescent whitening agents (FWAs) are very important chemical additives that are widely applied in the industrial production field. The history of global FWA production and use spans more than 60 years, but the environmental fate of FWAs has been less reported in the public literature and most studies predate 2000;in addition, the studied FWAs were still limited to FWA71 and FWA351. In this study, the occurrence and distribution of 9 commonly used FWAs in a lake in North China were reported for the first time. We found that 6 target FWAs were prevalent in the lake, and the concentration levels were usually at the ng L-1 level. Decreasing FWA levels with increasing distance from the estuary area were observed in summer. FWA135, FWA185, and FWA367, the most detected 3 FWAs, with the ecological risk at high levels, and sigma RQ >10 were obtained from all the investigated samples, suggesting that all the sampling sites could be considered with certain ecological risk for aquatic life. As a category of heavily and widely used dyes, FWAs in environmental media have been ignored for a long time. Substantial additional research needs to be conducted to determine the environmental behavior and ecological toxicology of FWAs.
Oenococcus oeni and Lactiplantibacillus plantarum are major wine-associated lactic acid bacteria that positively influence wine by carrying out malolactic fermentation. O. oeni is the most widely used commercial start...
详细信息
Oenococcus oeni and Lactiplantibacillus plantarum are major wine-associated lactic acid bacteria that positively influence wine by carrying out malolactic fermentation. O. oeni is the most widely used commercial starter in winemaking because of its fast and efficient malate metabolism capacity under harsh wine conditions. To date, very little is known about the specific molecular mechanism underlying the differences in malate metabolism between O. oeni and L. plantarum under harsh wine conditions. Therefore, in this study, the functions of genes encoding malic enzyme (ME) and malolactic enzyme (MLE) under acid stress in O. oeni and L. plantarum, previously described to have the ability to direct malate metabolism, were comparatively verified through genetic manipulation in L. plantarum. Results showed that the MLE was the only enzyme responsible for direct malate metabolism under acid stress in O. oeni and L. plantarum. In addition, the MLEs in O. oeni and L. plantarum were positively related to acid tolerance by metabolizing malate and increasing the medium pH. Furthermore, the MLE in O. oeni exhibited significantly higher malate metabolism activity than that in L. plantarum under acid stress.
暂无评论