为解决现有辨识方法在针对耦合的次/超同步振荡参数提取过程中的噪声适应性差和模态混叠问题,该文提出了一种自适应的变分模态分解法(variational mode decomposition,VMD),定义残差损失总熵、中心频率的切比雪夫距离以及边缘熵共同决定分解模态数和带宽,结合最小二乘-旋转不变技术(total least square-estimating signal parameter via rotational invariance techniques,TLS-ESPRIT)对分解出的振荡分量进行参数辨识,无需另外使用降噪算法。通过复合信号测试法、PSCAD/EMTDC电磁暂态仿真法验证了所提方法的有效性。最后,将所提方法与改进Prony算法、MCEEMD法在不同噪声水平和振荡频率下进行对比,结果表明,所提方法能够有效地抑制原始信号的噪声干扰,对耦合的次/超同步振荡信号分解更加准确,参数辨识结果可靠性较高,对风电系统振荡溯源、改善系统阻尼具有一定的参考意义。
暂无评论