咨询与建议

限定检索结果

文献类型

  • 425 篇 期刊文献
  • 11 篇 会议

馆藏范围

  • 436 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 436 篇 工学
    • 423 篇 电气工程
    • 421 篇 控制科学与工程
    • 12 篇 计算机科学与技术...
    • 6 篇 仪器科学与技术
    • 3 篇 信息与通信工程
    • 1 篇 土木工程
    • 1 篇 交通运输工程
    • 1 篇 生物医学工程(可授...
  • 3 篇 理学
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 物理学
  • 2 篇 医学
    • 2 篇 临床医学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 436 篇 deep learning fo...
  • 77 篇 feature extracti...
  • 67 篇 three-dimensiona...
  • 58 篇 object detection
  • 55 篇 training
  • 51 篇 visual learning
  • 46 篇 task analysis
  • 42 篇 localization
  • 42 篇 computer vision ...
  • 41 篇 cameras
  • 40 篇 semantic scene u...
  • 40 篇 deep learning me...
  • 40 篇 rgb-d perception
  • 39 篇 robots
  • 38 篇 segmentation and...
  • 38 篇 semantics
  • 38 篇 computer vision ...
  • 36 篇 visualization
  • 31 篇 point cloud comp...
  • 30 篇 recognition

机构

  • 6 篇 google ch-8002 z...
  • 5 篇 univ bonn d-5311...
  • 5 篇 korea adv inst s...
  • 5 篇 zhejiang univ co...
  • 5 篇 tech univ munich...
  • 4 篇 univ tubingen d-...
  • 4 篇 keio univ yokoha...
  • 4 篇 carnegie mellon ...
  • 4 篇 univ chinese aca...
  • 4 篇 nyu brooklyn ny ...
  • 3 篇 univ michigan an...
  • 3 篇 shanghai jiao to...
  • 3 篇 zhejiang univ zh...
  • 3 篇 natl univ def te...
  • 3 篇 univ chinese aca...
  • 3 篇 shanghai jiao to...
  • 3 篇 southeast univ s...
  • 3 篇 toyota res inst ...
  • 3 篇 univ perugia dep...
  • 3 篇 alibaba grp peop...

作者

  • 8 篇 tombari federico
  • 8 篇 giusti alessandr...
  • 8 篇 stachniss cyrill
  • 7 篇 behley jens
  • 7 篇 sugiura komei
  • 6 篇 caputo barbara
  • 5 篇 guzzi jerome
  • 5 篇 seo seung-woo
  • 5 篇 weyler jan
  • 5 篇 navab nassir
  • 5 篇 hutter marco
  • 5 篇 wu jun
  • 5 篇 xiang zhiyu
  • 5 篇 valada abhinav
  • 4 篇 shin ukcheol
  • 4 篇 van gool luc
  • 4 篇 gambardella luca...
  • 4 篇 nava mirko
  • 4 篇 garg sourav
  • 4 篇 wang yue

语言

  • 436 篇 英文
检索条件"主题词=Deep Learning for Visual Perception"
436 条 记 录,以下是381-390 订阅
排序:
Crowd Density Forecasting by Modeling Patch-Based Dynamics
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第2期6卷 287-294页
作者: Minoura, Hiroaki Yonetani, Ryo Nishimura, Mai Ushiku, Yoshitaka Chubu Univ Matsumotocho 1200 Kasugai Aichi 4878501 Japan OMRON SINIC X Corp Bunkyo Ku Hongo 5-24-5 Tokyo 1130033 Japan
Forecasting human activities observed in videos is a long-standing challenge in computer vision and robotics and is also beneficial for various real-world applications such as mobile robot navigation and drone landing... 详细信息
来源: 评论
PI-Net: An End-to-End deep Neural Network for Bidirectionally and Directly Fusing Point Clouds With Images
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第4期6卷 8647-8654页
作者: Wang, Qi Chen, Jian Deng, Jianqiang Zhang, Xinfang Zhejiang Univ State Key Lab Fluid Power & Mech Syst Coll Control Sci & Engn Hangzhou Peoples R China Zhejiang Univ Sch Mech Engn State Key Lab Fluid Power & Mechatron Syst Hangzhou Peoples R China
We present a novel network, PI-Net, for the fusion between point clouds and images in this letter. Most existing fusion methods project point clouds into pseudo images and then fuse the pseudo and RGB images with 2D C... 详细信息
来源: 评论
Spatio-Temporal Convolutional Networks and N-Ary Ontologies for Human Activity-Aware Robotic System
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第2期6卷 620-627页
作者: Abdelkawy, H. Ayari, N. Chibani, A. Amirat, Y. Attal, F. Univ Paris Est Creteil UPEC LISSI Lab Cloud Robot F-77420 Champs Sur France ALTRAN Technol Res Dept F-78457 Velizy Villacoublay France
Endowing a companion robot with cognitive abilities to recognize human daily activities, in particular from body skeletons information, is a significant challenge, which needs complex and novel approaches. Recently, m... 详细信息
来源: 评论
Combining Events and Frames Using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第2期6卷 2822-2829页
作者: Gehrig, Daniel Rueegg, Michelle Gehrig, Mathias Hidalgo-Carrio, Javier Scaramuzza, Davide Univ Zurich Percept Grp CH-8050 Zurich Switzerland
Event cameras are novel vision sensors that report per-pixel brightness changes as a stream of asynchronous "events". They offer significant advantages compared to standard cameras due to their high temporal... 详细信息
来源: 评论
Learned Camera Gain and Exposure Control for Improved visual Feature Detection and Matching
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第2期6卷 2028-2035页
作者: Tomasi, Justin Wagstaff, Brandon Waslander, Steven L. Kelly, Jonathan Univ Toronto Inst Aerosp Studies UTIAS Space & Terr Autonomous Robot Syst STARS Lab Toronto ON M3H 5T6 Canada Univ Toronto Inst Aerosp Studies Toronto Robot & AILab TRAIL Toronto ON M3H 5T6 Canada
Successful visual navigation depends upon capturing images that contain sufficient useful information. In this letter, we explore a data-driven approach to account for environmental lighting changes, improving the qua... 详细信息
来源: 评论
Weakly-Supervised Domain Adaptation of deep Regression Trackers via Reinforced Knowledge Distillation
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第3期6卷 5016-5023页
作者: Dunnhofer, Matteo Martinel, Niki Micheloni, Christian Univ Udine Machine Learning & Percept Lab I-33100 Udine Italy
deep regression trackers are among the fastest tracking algorithms available, and therefore suitable for real-time robotic applications. However, their accuracy is inadequate in many domains due to distribution shift ... 详细信息
来源: 评论
Multi-Frame Feature Aggregation for Real-Time Instrument Segmentation in Endoscopic Video
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第4期6卷 6773-6780页
作者: Lin, Shan Qin, Fangbo Peng, Haonan Bly, Randall A. Moe, Kris S. Hannaford, Blake Univ Washington Dept Elect & Comp Engn Seattle WA 98195 USA Chinese Acad Sci Res Ctr Precis Sensing & Control Inst Automat Beijing 100190 Peoples R China UW Dept Otolaryngol Head & Neck Surg Seattle WA 98105 USA
deep learning-based methods have achieved promising results on surgical instrument segmentation. However, the high computation cost may limit the application of deep models to time-sensitive tasks such as online surgi... 详细信息
来源: 评论
ESPADA: Extended Synthetic and Photogrammetric Aerial-Image Dataset
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第4期6卷 7981-7988页
作者: Lopez-Campos, Rafael Martinez-Carranza, Jose Inst Nacl Astrofis Opt & Electr Dept Comp Sci Puebla Mexico
We present a new aerial image dataset, named ES-PADA, intended for the training of deep neural networks for depth image estimation from a single aerial image. Given the difficulty of creating aerial image datasets con... 详细信息
来源: 评论
ChangeGAN: A deep Network for Change Detection in Coarsely Registered Point Clouds
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第4期6卷 8277-8284页
作者: Nagy, Balazs Kovacs, Lorant Benedek, Csaba Eotvos Lorand Res Network Inst Comp Sci & Control SZ TAKI H-1083 Budapest Hungary Peter Pazmany Catholic Univ H-1083 Budapest Hungary
In this letter we introduce a novel change detection approach called ChangeGAN for coarsely registered point clouds in complex street-level urban environment. Our generative adversarial network-like (GAN) architecture... 详细信息
来源: 评论
ADAADepth: Adapting Data Augmentation and Attention for Self-Supervised Monocular Depth Estimation
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第4期6卷 7791-7798页
作者: Kaushik, Vinay Jindgar, Kartik Lall, Brejesh IIT Delhi Dept Elect Engn Delhi 110016 India Manipal Univ Jaipur 302004 Rajasthan India
Self-supervised learning of depth has been a highly studied topic of research as it alleviates the requirement of having ground truth annotations for predicting depth. Depth is learnt as an intermediate solution to th... 详细信息
来源: 评论