咨询与建议

限定检索结果

文献类型

  • 37 篇 期刊文献
  • 21 篇 会议

馆藏范围

  • 58 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 58 篇 工学
    • 55 篇 计算机科学与技术...
    • 23 篇 电气工程
    • 6 篇 信息与通信工程
    • 6 篇 控制科学与工程
    • 6 篇 软件工程
    • 4 篇 网络空间安全
    • 3 篇 生物医学工程(可授...
    • 2 篇 交通运输工程
    • 2 篇 安全科学与工程
    • 1 篇 仪器科学与技术
  • 7 篇 医学
    • 4 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 特种医学
  • 7 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
  • 6 篇 理学
    • 3 篇 物理学
    • 2 篇 化学
    • 1 篇 数学
    • 1 篇 生物学
    • 1 篇 系统科学
  • 1 篇 文学
  • 1 篇 农学
    • 1 篇 水产

主题

  • 58 篇 one-class learni...
  • 18 篇 anomaly detectio...
  • 5 篇 neural networks
  • 5 篇 incremental lear...
  • 5 篇 supervised learn...
  • 4 篇 deep learning
  • 4 篇 feature extracti...
  • 3 篇 task analysis
  • 3 篇 image classifica...
  • 2 篇 outlier detectio...
  • 2 篇 automatic speake...
  • 2 篇 ensemble learnin...
  • 2 篇 generative adver...
  • 2 篇 kernel methods
  • 2 篇 continual learni...
  • 2 篇 lifelong learnin...
  • 2 篇 mooc
  • 2 篇 authentication
  • 2 篇 recruitment
  • 2 篇 machine learning

机构

  • 4 篇 amer univ dept c...
  • 3 篇 xi an jiao tong ...
  • 2 篇 american univers...
  • 2 篇 ping an technol ...
  • 2 篇 univ ottawa sch ...
  • 1 篇 nanyang technol ...
  • 1 篇 singapore univ t...
  • 1 篇 penn state univ ...
  • 1 篇 univ konstanz co...
  • 1 篇 univ technol syd...
  • 1 篇 natl interuniv c...
  • 1 篇 univ illinois de...
  • 1 篇 ningbo univ fac ...
  • 1 篇 shanghai jiao to...
  • 1 篇 univ dist columb...
  • 1 篇 mcgill univ dept...
  • 1 篇 univ new south w...
  • 1 篇 robert bosch gmb...
  • 1 篇 sichuan univ col...
  • 1 篇 chengdu univ inf...

作者

  • 5 篇 japkowicz nathal...
  • 4 篇 shen chao
  • 4 篇 guan xiaohong
  • 3 篇 cai zhongmin
  • 3 篇 corizzo roberto
  • 3 篇 maxion roy a.
  • 2 篇 cortez paulo
  • 2 篇 marcacini ricard...
  • 2 篇 summers ronald m...
  • 2 篇 sun wenju
  • 2 篇 wang wen
  • 2 篇 xiao jing
  • 2 篇 pilastri andre
  • 2 篇 srikant shashank
  • 2 篇 zhang jing
  • 2 篇 decherchi sergio
  • 2 篇 tang yu-xing
  • 2 篇 dong yue
  • 2 篇 aggarwal varun
  • 2 篇 matos luis migue...

语言

  • 58 篇 英文
检索条件"主题词=One-Class Learning"
58 条 记 录,以下是1-10 订阅
排序:
Deep one-class probability learning for end-to-end image classification
收藏 引用
NEURAL NETWORKS 2025年 185卷 107201页
作者: Liu, Jia Zhang, Wenhua Liu, Fang Yang, Jingxiang Xiao, Liang Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Peoples R China
one-class learning has many application potentials in novelty, anomaly, and outlier detection systems. It aims to distinguish both positive and negative samples with a model trained via only positive samples or one-cl... 详细信息
来源: 评论
one-class learning and concept summarization for data streams
收藏 引用
KNOWLEDGE AND INFORMATION SYSTEMS 2011年 第3期28卷 523-553页
作者: Zhu, Xingquan Ding, Wei Yu, Philip S. Zhang, Chengqi Univ Technol Sydney Ctr Quantum Computat & Intelligent Syst Fac Eng & Informat Technol Sydney NSW 2007 Australia Florida Atlantic Univ Dept Comp Sci & Engn Boca Raton FL 33431 USA Univ Massachusetts Dept Comp Sci Boston MA 02125 USA Univ Illinois Dept Comp Sci Chicago IL 60680 USA
In this paper, we formulate a new research problem of concept learning and summarization for one-class data streams. The main objectives are to (1) allow users to label instance groups, instead of single instances, as... 详细信息
来源: 评论
one-class learning Method Based on Live Correlation Loss for Face Anti-Spoofing
收藏 引用
IEEE ACCESS 2020年 8卷 201635-201648页
作者: Lim, Seokjae Gwak, Yongjae Kim, Wonjun Roh, Jong-Hyuk Cho, Sangrae Konkuk Univ Dept Elect & Elect Engn Seoul 05029 South Korea Elect & Telecommun Res Inst Daejeon 34129 South Korea
As biometric authentication systems are popularly used in various mobile devices, e.g., smart-phones and tablets, face anti-spoofing methods have been actively developed for the high-level security. However, most prev... 详细信息
来源: 评论
one-class learning with Adaptive Centroid Shift for Audio Deepfake Detection  25
One-Class Learning with Adaptive Centroid Shift for Audio De...
收藏 引用
25th Interspeech Conference
作者: Kim, Hyun Myung Fang, Kangwook Kim, Hoirin Korea Adv Inst Sci & Technol Sch Elect Engn Daejeon South Korea
As speech synthesis systems continue to make remarkable advances in recent years, the importance of robust deepfake detection systems that perform well in unseen systems has grown. In this paper, we propose a novel ad... 详细信息
来源: 评论
Malicious Overtones: Hunting Data Theft in the Frequency Domain with one-class learning
收藏 引用
ACM TRANSACTIONS ON PRIVACY AND SECURITY 2019年 第4期22卷 1–34页
作者: Powell, Brian A. Johns Hopkins Univ Appl Phys Lab 11100 Johns Hopkins Rd Laurel MD 20723 USA
A method for detecting electronic data theft from computer networks is described, capable of recognizing patterns of remote exfiltration occurring over days to weeks. Normal traffic flow data, in the form of a host... 详细信息
来源: 评论
Incrementally Generative Adversarial Diagnostics Using Few-Shot Enabled one-class learning
收藏 引用
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 2024年 第10期20卷 12189-12199页
作者: Pu, Ziqiang Yan, Lijuan Bai, Yun Cabrera, Diego Li, Chuan Chongqing Technol & Business Univ Sch Mech Engn Chongqing 400067 Peoples R China Chongqing Technol & Business Univ Res Ctr Syst Hlth Maintenance Chongqing 400067 Peoples R China Chongqing Technol & Business Univ Sch Management Sci & Engn Chongqing 400067 Peoples R China Univ Politecn Salesiana GIDTEC Grp Cuenca 010105 Ecuador
In real-world industrial scenarios, fault diagnosis often relies on a significant volume of normal data to detect faults with a few coming samples. The limited sample nature of newly introduced faults can pose challen... 详细信息
来源: 评论
Import Vector Domain Description: A Kernel Logistic one-class learning Algorithm
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2017年 第7期28卷 1722-1729页
作者: Decherchi, Sergio Rocchia, Walter Ist Italiano Tecnol CONCEPT Lab I-16163 Genoa Italy BiKi Technol Srl I-16121 Genoa Italy
Recognizing the samples belonging to one class in a heterogeneous data set is a very interesting but tough machine learning task. Some samples of the data set can be actual outliers or members of other classes for whi... 详细信息
来源: 评论
SYMBOLIC one-class learning FROM IMBALANCED DATASETS: APPLICATION IN MEDICAL DIAGNOSIS
收藏 引用
INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS 2009年 第2期18卷 273-309页
作者: Mena, Luis Gonzalez, Jesus A. Univ Zulia Fac Engn Dept Comp Sci Maracaibo 4011 Venezuela Natl Inst Astrophys Opt & Elect Dept Comp Sci Puebla Mexico
When working with real-world applications we often find imbalanced datasets, those for which there exists a majority class with normal data and a minority class with abnormal or important data. In this work, we make a... 详细信息
来源: 评论
Towards Gas Identification in Unknown Mixtures Using an Electronic Nose with one-class learning
Towards Gas Identification in Unknown Mixtures Using an Elec...
收藏 引用
IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)
作者: Fan, Han Jonsson, Daniel Schaffernicht, Erik Lilienthal, Achim J. Orebro Univ AASS Res Ctr Mobile Robot & Olfact Lab SE-70182 Orebro Sweden
Gas identification using an electronic nose (e-nose) typically relies on a multi-class classifier trained with extensive data of a limited set of target analytes. Usually, classification performance degrades in the pr... 详细信息
来源: 评论
A Deep one-class learning Method for Replay Attack Detection  23
A Deep One-Class Learning Method for Replay Attack Detection
收藏 引用
Interspeech Conference
作者: Lou, Yijie Pu, Shiliang Zhou, Jianfeng Qi, Xin Dong, Qinbo Zhou, Hongwei Hikvis Res Inst Hangzhou Peoples R China
Replay-attack is a serious issue for automatic speaker verification (ASV) and recently lots of countermeasures have been proposed to protect ASV from spoofing attacks. Traditional countermeasures are a binary-classifi... 详细信息
来源: 评论