咨询与建议

限定检索结果

文献类型

  • 88 篇 期刊文献
  • 49 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 138 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 128 篇 工学
    • 59 篇 计算机科学与技术...
    • 56 篇 电气工程
    • 29 篇 测绘科学与技术
    • 26 篇 控制科学与工程
    • 18 篇 信息与通信工程
    • 15 篇 软件工程
    • 12 篇 交通运输工程
    • 11 篇 仪器科学与技术
    • 9 篇 环境科学与工程(可...
    • 7 篇 土木工程
    • 4 篇 机械工程
    • 3 篇 电子科学与技术(可...
    • 2 篇 材料科学与工程(可...
    • 2 篇 网络空间安全
    • 1 篇 光学工程
    • 1 篇 动力工程及工程热...
  • 39 篇 理学
    • 23 篇 地球物理学
    • 8 篇 物理学
    • 5 篇 化学
    • 5 篇 地理学
    • 4 篇 生物学
    • 2 篇 数学
  • 34 篇 医学
    • 33 篇 临床医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 公共卫生与预防医...
  • 9 篇 管理学
    • 9 篇 管理科学与工程(可...
  • 2 篇 农学
    • 2 篇 农业资源与环境
  • 1 篇 经济学
    • 1 篇 理论经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 文学
    • 1 篇 新闻传播学

主题

  • 138 篇 road segmentatio...
  • 28 篇 deep learning
  • 18 篇 roads
  • 17 篇 remote sensing
  • 13 篇 image segmentati...
  • 12 篇 feature extracti...
  • 8 篇 road detection
  • 8 篇 cnn
  • 7 篇 task analysis
  • 7 篇 autonomous vehic...
  • 7 篇 lidar
  • 6 篇 semantics
  • 6 篇 attention mechan...
  • 6 篇 convolutional ne...
  • 5 篇 vehicle detectio...
  • 5 篇 convolution
  • 4 篇 semantic segment...
  • 4 篇 advanced driver ...
  • 4 篇 domain adaptatio...
  • 4 篇 satellite images

机构

  • 6 篇 nanjing univ sci...
  • 4 篇 worcester polyte...
  • 2 篇 nanjing univ pos...
  • 2 篇 harbin inst tech...
  • 2 篇 shaanxi normal u...
  • 2 篇 univ elect sci &...
  • 2 篇 chengdu univ inf...
  • 2 篇 huazhong univ sc...
  • 2 篇 nanyang technol ...
  • 2 篇 wuhan univ state...
  • 2 篇 nanjing univ inf...
  • 2 篇 univ fed santa c...
  • 2 篇 univ trento dept...
  • 2 篇 beijing univ pos...
  • 2 篇 chinese acad sci...
  • 1 篇 huaan secur co l...
  • 1 篇 edith cowan univ...
  • 1 篇 harbin inst tech...
  • 1 篇 jushri technol i...
  • 1 篇 univ waterloo wa...

作者

  • 4 篇 bai lin
  • 4 篇 lyu yecheng
  • 4 篇 huang xinming
  • 3 篇 fu fangfa
  • 3 篇 xue feng
  • 3 篇 wang yao
  • 3 篇 wang jinxiang
  • 2 篇 peng bo
  • 2 篇 kong hui
  • 2 篇 wang cailing
  • 2 篇 lai fengchang
  • 2 篇 alamri abdullah
  • 2 篇 fan kunlong
  • 2 篇 gong shi
  • 2 篇 pradhan biswajee...
  • 2 篇 pauli josef
  • 2 篇 liu huajun
  • 2 篇 xu weizhe
  • 2 篇 zou wenbin
  • 2 篇 tang zhenming

语言

  • 134 篇 英文
  • 4 篇 其他
检索条件"主题词=Road segmentation"
138 条 记 录,以下是41-50 订阅
排序:
road segmentation with image-LiDAR data fusion in deep neural network
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2020年 第47-48期79卷 35503-35518页
作者: Liu, Huafeng Yao, Yazhou Sun, Zeren Li, Xiangrui Jia, Ke Tang, Zhenming Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Peoples R China Chengdu Univ Informat Technol Sch Comp Sci Chengdu Peoples R China
Robust road segmentation is a key challenge in self-driving research. Though many image based methods have been studied and high performances in dataset evaluations have been reported, developing robust and reliable r... 详细信息
来源: 评论
CSANet: Cross-Scale Axial Attention Network for road segmentation
收藏 引用
REMOTE SENSING 2023年 第1期15卷 3-3页
作者: Cao, Xianghai Zhang, Kai Jiao, Licheng Xidian Univ Sch Artificial Intelligence Xian 710071 Peoples R China
road segmentation from remote sensing images is an important task in many applications. However, due to the high density of roads and the complex background, the roads are often occluded by trees. This makes accurate ... 详细信息
来源: 评论
Dual geometric perception for cross-domain road segmentation
收藏 引用
DISPLAYS 2023年 76卷
作者: Zou, Wenbin Long, Ruijing Zhang, Yuhang Liao, Muxin Zhou, Zhi Tian, Shishun Shenzhen Univ Shenzhen Key Lab Adv Machine Learning & Applicat Shenzhen 518060 Peoples R China Shenzhen Univ Guangdong Key Lab Intelligent Informat Proc Shenzhen 518060 Peoples R China Shenzhen Univ Inst Artificial Intelligence & Adv Commun Shenzhen 518060 Peoples R China Shenzhen Univ Coll Elect & Informat Engn Shenzhen 518060 Peoples R China
road segmentation plays an important role in navigation systems and autonomous driving. However, many methods in road segmentation are based on supervised learning and suffer from performance degradation in the real w... 详细信息
来源: 评论
An Automatic road Surface segmentation in Non-Urban Environments: A 3D Point Cloud Approach With Grid Structure and Shallow Neural Networks
收藏 引用
IEEE ACCESS 2024年 12卷 33035-33044页
作者: Dowajy, Mohammad Somogyi, Arpad Jozsef Barsi, Arpad Lovas, Tamas Budapest Univ Technol & Econ Fac Civil Engn Dept Photogrammetry & Geoinformat H-1111 Budapest Hungary
Automatic road segmentation from three-dimensional point cloud data has gained increasing interest recently. However, it is still challenging to do this task automatically due to the wide variations of roads and compl... 详细信息
来源: 评论
Wasserstein Distance-Based Domain Adaptation and Its Application to road segmentation
Wasserstein Distance-Based Domain Adaptation and Its Applica...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Kono, Seita Ueda, Takaya Arriaga-Varela, Enrique Nishikawa, Ikuko Ritsumeikan Univ Kusatsu Shiga 5258577 Japan Stroly Inc Kyoto 6008258 Japan
Domain adaptation is used in applying a classifier acquired in one data domain to another data domain. A classifier obtained by supervised training with labeled data in an original source domain can also be used for c... 详细信息
来源: 评论
DDCAttNet: road segmentation Network for Remote Sensing Images  16th
DDCAttNet: Road Segmentation Network for Remote Sensing Imag...
收藏 引用
16th International Conference on Wireless Algorithms, Systems, and Applications (WASA)
作者: Yuan, Genji Li, Jianbo Lv, Zhiqiang Li, Yinong Xu, Zhihao Qingdao Univ Coll Comp Sci & Technol Qingdao 266071 Peoples R China Inst Ubiquitous Networks & Urban Comp Qingdao 266070 Peoples R China
Semantic segmentation of remote sensing images based on deep convolutional neural networks has proven its effectiveness. However, due to the complexity of remote sensing images, deep convolutional neural networks have... 详细信息
来源: 评论
Weakly Supervised road segmentation in High-Resolution Remote Sensing Images Using Point Annotations
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2022年 60卷 1页
作者: Lian, Renbao Huang, Liqin Fuzhou Univ Coll Phys & Informat Engn Fuzhou 350008 Peoples R China Internet Of Things Key Lab Informat Collect & Pro Digital Fujian Fuzhou 350108 Peoples R China Fujian Jiangxia Univ Coll Elect & Informat Sci Fuzhou 350108 Peoples R China
road segmentation methods based on deep neural networks have achieved great success in recent years, but creating accurate pixel-wise training labels is still a boring and expensive task, especially for large-scale hi... 详细信息
来源: 评论
Implementation of road segmentation Using U-Net Model on Single Board Computer  22
Implementation of Road Segmentation Using U-Net Model on Sin...
收藏 引用
Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications
作者: Esa Prakasa Dary Zhafran Dwi Astharini Research Center for Data and Information Sciences National Research and Innovation Agency (BRIN) Indonesia Al Azhar University of Indonesia Indonesia Universitas Al Azhar Indonesia Indonesia
Technological developments in the era of globalization, several companies are competing in the field of artificial intelligence by developing autonomous drive systems. Training and road segmentation testing in this st... 详细信息
来源: 评论
A road segmentation Method Based on Reorganized LiDAR Points and Line Scanning  13
A Road Segmentation Method Based on Reorganized LiDAR Points...
收藏 引用
13th International Conference on Digital Image Processing (ICDIP)
作者: Wang, Zhihui Gu, Hao Yin, Ning Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Peoples R China
road segmentation is an important part of autonomous driving vehicles. Reliable road segmentation results are a prerequisite for autonomous driving tasks, e.g., path planning In this paper, we propose a road segmentat... 详细信息
来源: 评论
Stagewise Unsupervised Domain Adaptation With Adversarial Self-Training for road segmentation of Remote-Sensing Images
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2022年 60卷 1页
作者: Zhang, Lefei Lan, Meng Zhang, Jing Tao, Dacheng Wuhan Univ Sch Comp Sci Inst Artificial Intelligence Wuhan 430072 Peoples R China Univ Sydney Fac Engn Sch Comp Sci Sydney NSW 2006 Australia JD Explore Acad Beijing 102600 Peoples R China
road segmentation from remote-sensing images is a challenging task with wide ranges of application potentials. Deep neural networks have advanced this field by leveraging the power of large-scale labeled data, which, ... 详细信息
来源: 评论