咨询与建议

限定检索结果

文献类型

  • 21 篇 期刊文献
  • 15 篇 会议

馆藏范围

  • 36 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 36 篇 工学
    • 23 篇 电气工程
    • 23 篇 计算机科学与技术...
    • 4 篇 软件工程
    • 2 篇 控制科学与工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 电子科学与技术(可...
    • 1 篇 生物医学工程(可授...
  • 4 篇 理学
    • 4 篇 物理学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 36 篇 algorithm-hardwa...
  • 5 篇 hardware acceler...
  • 5 篇 hardware
  • 4 篇 object detection
  • 4 篇 deep learning
  • 4 篇 neural networks
  • 4 篇 fpga accelerator
  • 4 篇 neural network
  • 4 篇 quantization (si...
  • 4 篇 hardware acceler...
  • 3 篇 transformers
  • 3 篇 accuracy
  • 2 篇 vision transform...
  • 2 篇 low power
  • 2 篇 transformer
  • 2 篇 structural plast...
  • 2 篇 post-training qu...
  • 2 篇 asic
  • 2 篇 computer archite...
  • 2 篇 neural architect...

机构

  • 4 篇 nanjing univ sch...
  • 3 篇 sun yat sen univ...
  • 2 篇 univ michigan de...
  • 2 篇 arizona state un...
  • 2 篇 arizona state un...
  • 2 篇 arizona state un...
  • 2 篇 korea adv inst s...
  • 2 篇 shenzhen univ co...
  • 1 篇 natl yang ming c...
  • 1 篇 univ hong kong d...
  • 1 篇 univ toronto on
  • 1 篇 georgia inst tec...
  • 1 篇 univ penn 220 s ...
  • 1 篇 ewha womans univ...
  • 1 篇 ericsson res lun...
  • 1 篇 sapeon korea inc...
  • 1 篇 cornell univ ith...
  • 1 篇 korea adv inst s...
  • 1 篇 huawei technol c...
  • 1 篇 forth ics & ece ...

作者

  • 5 篇 cao yu
  • 4 篇 wang zhongfeng
  • 3 篇 shi huihong
  • 3 篇 seo jae-sun
  • 2 篇 kumar vijay
  • 2 篇 je minkyu
  • 2 篇 lyu dongxu
  • 2 篇 lin yingyan
  • 2 篇 li zheng
  • 2 篇 li wenjie
  • 2 篇 linkhorst john
  • 2 篇 byun wooseok
  • 2 篇 felder daniel
  • 2 篇 suh han-sok
  • 2 篇 cai siqi
  • 2 篇 you haoran
  • 2 篇 kim ji-hoon
  • 2 篇 meng jian
  • 2 篇 he guanghui
  • 2 篇 ye wenbin

语言

  • 34 篇 英文
  • 2 篇 其他
检索条件"主题词=algorithm-hardware co-design"
36 条 记 录,以下是1-10 订阅
排序:
algorithm-hardware co-design for Wearable BCIs: An Evolution from Linear Algebra to Transformers
Algorithm-Hardware Co-Design for Wearable BCIs: An Evolution...
收藏 引用
IEEE International Symposium on Circuits and Systems (ISCAS)
作者: Park, Sunyoung Byun, Wooseok Je, Minkyu Kim, Ji-Hoon Ewha Womans Univ Dept Elect & Elect Engn Seoul South Korea Ewha Womans Univ Grad Program Smart Factory Seoul South Korea SAPEON Korea Inc Seongnam South Korea Korea Adv Inst Sci & Technol Sch Elect Engn Daejeon South Korea
Recent advancements in brain-computer interface (BCI) technology for steady-state visual evoked potential (SSVEP)-based target identification have shifted from traditional linear algebra (LA) techniques to more sophis... 详细信息
来源: 评论
coMN: algorithm-hardware co-design Platform for Nonvolatile Memory-Based convolutional Neural Network Accelerators
收藏 引用
IEEE TRANSACTIONS ON coMPUTER-AIDED design OF INTEGRATED CIRCUITS AND SYSTEMS 2024年 第7期43卷 2043-2056页
作者: Han, Lixia Pan, Renjie Zhou, Zheng Lu, Hairuo Chen, Yiyang Yang, Haozhang Huang, Peng Sun, Guangyu Liu, Xiaoyan Kang, Jinfeng Peking Univ Sch Integrated Circuits Beijing 100871 Peoples R China Peking Univ Beijing Adv Innovat Ctr Integrated Circuits Beijing 100871 Peoples R China Peking Univ Sch Software & Microelect Beijing 102600 Peoples R China
computing in memory (CIM) convolutional neural network (CNN) accelerators based on nonvolatile memory (NVM) show great potential to improve energy efficiency and throughput, while the multiple design levels and huge d... 详细信息
来源: 评论
High Throughput FPGA-Based Object Detection via algorithm-hardware co-design
收藏 引用
ACM TRANSACTIONS ON REcoNFIGURABLE TECHNOLOGY AND SYSTEMS 2024年 第1期17卷 1-20页
作者: Anupreetham, Anupreetham Ibrahim, Mohamed Hall, Mathew Boutros, Andrew Kuzhively, Ajay Mohanty, Abinash Nurvitadhi, Eriko Betz, Vaughn Cao, Yu Seo, Jae-Sun Arizona State Univ Tempe AZ 85287 USA Univ Toronto Toronto ON Canada Intel Corp Santa Clara CA USA Vector Inst AI Toronto ON Canada
Object detection and classification is a key task in many computer vision applications such as smart surveillance and autonomous vehicles. Recent advances in deep learning have significantly improved the quality of re... 详细信息
来源: 评论
Advances in Wearable Brain-computer Interfaces From an algorithm-hardware co-design Perspective
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS 2022年 第7期69卷 3071-3077页
作者: Byun, Wooseok Je, Minkyu Kim, Ji-Hoon SAPEON Korea Architecture Team Seongnam 13486 South Korea Korea Adv Inst Sci & Technol Sch Elect Engn Daejeon 34141 South Korea Ewha Womans Univ Dept Elect & Elect Engn Smart Factory Multidisciplinary Program Seoul 03760 South Korea
Brain-computer interface (BCI), a communication technology between brain and computer developed for a long time since the 1970s, can be incorporated into wearable devices by developing powerful signal processing algor... 详细信息
来源: 评论
An Efficient algorithm-hardware co-design for Radar-Based Fall Detection With Multi-Branch convolutions
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS 2023年 第4期70卷 1613-1624页
作者: Ou, Zixuan Yu, Bing Ye, Wenbin Shenzhen Univ Coll Elect & Informat Engn Shenzhen 518060 Peoples R China
In this paper, we propose an efficient algorithm-hardware co-design framework to realize radar-based fall detection with limited resources. We first design a compact neural network model named MB-Net with multi-branch... 详细信息
来源: 评论
ASBNN: Acceleration of Bayesian convolutional Neural Networks by algorithm-hardware co-design  32
ASBNN: Acceleration of Bayesian Convolutional Neural Network...
收藏 引用
32nd IEEE International conference on Application-specific Systems, Architectures and Processors (ASAP)
作者: Fujiwara, Yoshiki Takamaeda-Yamazaki, Shinya Univ Tokyo Bunkyo Ku Tokyo 1138656 Japan
Bayesian convolutional Neural Networks (BCNNs) have been proposed to address the problem of model uncertainty in conventional neural networks. By treating weights as distributions rather than deterministic values, BCN... 详细信息
来源: 评论
BDLUT: Blind image denoising with hardware-optimized look-up tables
收藏 引用
JOURNAL OF THE SOCIETY FOR INFORMATION DISPLAY 2025年
作者: Li, Boyu Ai, Zhilin Jiang, Baizhou Huang, Binxiao Li, Jason Chun Lok Liu, Jie Tu, Zhengyuan Wang, Guoyu Yu, Daihai Wong, Ngai Univ Hong Kong Dept Elect & Elect Engn Pok Fu Lam Hong Kong 99077 Peoples R China TCL Corp Res HK Co Ltd Pak Shek Kok Hong Kong Peoples R China
Denoising sensor-captured images on edge display devices remains challenging due to deep neural networks' (DNNs) high computational overhead and synthetic noise training limitations. This work proposes BDLUT(-D), ... 详细信息
来源: 评论
OFQ-LLM: Outlier-Flexing Quantization for Efficient Low-Bit Large Language Model Acceleration
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS 2025年
作者: Wang, Gang Cai, Siqi Li, Wenjie Lyu, Dongxu He, Guanghui Shanghai Jiao Tong Univ Sch Integrated Circuits State Key Lab MicroNano Engn Sci Shanghai 200240 Peoples R China Shanghai Jiao Tong Univ Sch Comp Sci Shanghai 200240 Peoples R China
Large Language Models (LLMs) have achieved significant success in various Natural Language Processing (NLP) tasks, becoming essential to modern intelligent computing. Their large memory footprint and high computationa... 详细信息
来源: 评论
M2-ViT: Accelerating Hybrid Vision Transformers With Two-Level Mixed Quantization
收藏 引用
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 2025年 第5期33卷 1492-1496页
作者: Liang, Yanbiao Shi, Huihong Wang, Zhongfeng Nanjing Univ Sch Elect Sci & Engn Nanjing 210023 Peoples R China Sun Yat Sen Univ Sch Integrated Circuits Shenzhen 518107 Peoples R China
Although vision transformers (ViTs) have achieved significant success, their intensive computations and substantial memory overheads challenge their deployment on edge devices. To address this, efficient ViTs have eme... 详细信息
来源: 评论
An Efficient Window-Based Vision Transformer Accelerator via Mixed-Granularity Sparsity
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS 2025年
作者: Dong, Qiwei Zhang, Siyu Wang, Zhongfeng Nanjing Univ Sch Elect Sci & Engn Nanjing 210023 Peoples R China Sun Yat Sen Univ Sch Integrated Circuits Shenzhen 518107 Peoples R China
Vision Transformers (ViTs) have achieved excellent performance on various computer vision tasks, while their high computation and memory costs pose challenges for practical deployment. To address this issue, token-lev... 详细信息
来源: 评论